N Image

Fablmage Library 5.3

fab-image.com

Fablmage Library Documentation

Created: 7/20/2023

Product version: 5.3.4.94467

Table of content:

. Introduction

. Getting Started

. Technical Issues

. Working with GigE Vision® Devices
. Machine Vision Guide

a W N =

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/OpenRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionArea.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionCircularity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionConvexity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionRectangularity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionElongation.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionMoment.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionNumberOfHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionOrientation.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionPerimeterLength.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingBox.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingCircle.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingRectangle.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionContours.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionDiameter.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionMedialAxis.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleStripe.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleStripes.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNStripes.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleRidge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleRidges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_NCC.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/RecognizeCharacters.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://www.fab-image.com

1. Introduction

Table of content:

e Overview
e Programming Conventions

e Fab Template Library

Overview

Introduction

Fablmage Library is a machine vision library for C++ and .NET programmers. It provides a comprehensive set of functions for creating industrial
image analysis applications — from standard-based image acquisition interfaces, through low-level image processing routines, to ready-made tools
such as template matching, measurements or barcode readers. The main strengths of the product include the highest performance, modern design
and simple structure making it easy to integrate with the rest of your code.

The scope of the library encompasses:

¢ Image Processing e 2D Edge Detection
High performance, any-shape ROI operations for unary and Detection of edges by the means of 2D edge tracing, i.e. by
binary image arithmetics, refinement, morphology, smoothing, extracting and refining locally maximal image gradients.
spatial transforms, gradients, thresholding and color analysis. . .

o Fourier Analysis

¢ Region Analysis Suitable both for educational experimentation and industrial
Robust processing of pixel sets that correspond to foreground application, this toolset provides methods for Fourier transform
objects: extraction, set arithmetics, refinement, morphology, and image processing in the frequency domain.
skeletonization, spatial transformations, feature extraction and .
measurements. * Template Matching

Efficient, robust and easy to use methods for localizing objects
Path Analysis using a gray-based or an edge-based model.
Subpixel-precise alternative to region analysis, particularly
suitable for shape analysis. Provides methods for contour
extraction, refinement, segmentation, smoothing, classification,

e Barcodes
Detection and recognition of many types of 1D codes.

global transformations, feature extraction and more. o Datacodes
e Profiles Detection and recognition of QR codes and DataMatrix codes.
Auxiliary toolset for analysis of one-dimensional sequences of o Hough Transform
values, e.g. image sections or path-related distances. Detection of analytical shapes using the Hough transform.
* Histograms o) ¢ Image Segmentation
Auxiliary toolset for value distribution analysis. Automated extraction of object regions using gray or edge
o Geometry 2D information.
Exhaustive toolset of geometric operations compatible with other e Multilayer Perceptron
parts of the library. Provides operations for measuring distances Artificial neural networks.

and angles, determining intersections, tangents and feature.

¢ 1D Edge Detection
Detection of edges, ridges and stripes (paired edges) by the
means of 1D edge scanning, i.e. by extracting and analysing a Shape Fitting
profile along a specified path. Subpixel-precise detection of analytical shapes, whose rough
locations are known.

¢ Optical Character Recognition
Text recognition or validation, including dot print.

Relation between Fablmage Library and Fablmage Studio

Each function of the Fablmage Library is the basis for the corresponding filter available in Fablmage Studio. Therefore, it is possible (and advisable)
to use the Fablmage Studio as a convenient, drag & drop prototyping tool, even if one intends to develop the final solution in C++ using Fabimage
Library. Moreover, for extended information about how to use advanced image analysis techniques, one can refer to from the
documentation of Fablmage Studio.

In the table below we compare the function with the filter:
Fablmage Library: Fablmage Studio:
void ThresholdImage = ThresholdImage
(inimage 2 inMinValue
inRoi l
t Image& inImage L \\ a :
cons ! outMonolmage inMaxValue

Optional<const Regioné&> inRoi,
Optional<real> inMinValue,
Optional<real> inMaxValue,
real inFuzziness,

Image& outMonoImage

Key Features
Performance

In Fablmage Library careful design of algorithms goes hand in hand with extensive hardware optimizations, resulting in performance that puts the
library among the fastest in the world. Our implementations make use of SSE instructions and parallel computations on multicore processors.

Modern Design

All types of data feature automatic memory management, errors are handled explicitly with exceptions and optional types are used for type-safe
special values. All functions are thread-safe and use data parallelisminternally, when possible.

Consistency
The library is a simple collection of types and functions, provided as a single DLL file with appropriate headers. For maximum readability function

follow consistent naming convention (e.g. the VERB + NOUN form as in: ,). All results are returned via reference output
parameters, so that many outputs are always possible.

Example Program

A simple program based on the Fablmage Library may look as follows:

https://docs.fab-image.com/5.3/fil/machine_vision_guide/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ErodeImage.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/RotateVector.html

#include <FIL.h>

using namespace ftl;
using namespace fil;

int main ()
{
try
{
InitLibrary () ;
Image input, output;
LoadImage ("input.bmp", false, input);
ThresholdImage (input, NIL, 128, NIL, 0, output);
SaveImage (output, NIL, "output.bmp", false);
return 0;
}
catch (const ftl::Erroré&)
{

return -1;
}
}

Please note that Fablmage Library is distributed with a set of example programs, which are available after installation.

Programming Conventions

Organization of the Library

Fablmage Library is a collection of C++ functions that process machine vision related types of data. Each function corresponds to a single data
processing operation, e.g. performs a Canny-like 2D edge detection. As a data processing library, it is not particularly object-
oriented. It does use, however, modern approach to C++ programming with automatic memory management, exception handling, thread safety and
the use of templates where appropriate.

Namespaces
There are two namespaces used:

o ftl —the namespace of types and functions related to
o fil — the namespace of types and functions related to Fablmage Library as the whole.

o fis — Fablmage Studio Code Generator equivalents of Fablmage Library functions. Not recommended to use.

Enumeration Types

All enumeration types in Fablmage Library use C++0x-like namespaces, for example:

namespace EdgeFilter
{
enum Type
{
Canny,
Deriche,
Lanser

}i

This has two advantages: (1) some identifiers can be shared between different enumeration types; (2) after typing "EdgeFilter::" IntelliSense will
display all possible elements of the given enumeration type.

Example:
ftl::Array<fil::Path> edges;
fil::Image image, gradientImage;

fil::DetectEdges_AsPaths(image, ftl::NIL, fil::EdgeFilter::Canny,
2.0f, ftl::NIL, 60.0f, 30.0f, ftl::NIL, 30.0f, 0.0f, ftl::NIL, 0.0f, edges, gradientImage);

Function Parameters

Contrary to standard C++ libraries, machine vision algorithms tend to have many parameters and often compute not single, but many output values.
Moreover, diagnostic information is highly important for effective work of a machine vision software engineer. For these reasons, function parameters
in Fabimage Library are organized as follows:

1. First come input parameters, which have "in" prefix.
2. Second come output parameters, which have "out" prefix and denote the resuilts.

3. The last come diagnostic output parameters, which have "diag" prefix and contain information that is useful for optimizing parameters (not
computed when the diagnostic mode is turned off).

For example, the following function invocation has a number of input parameters, a single output parameter (edges) and a single diagnostic output
parameter (gradientimage).

ftl::Array<fil::Path> edges;
fil::Image image, gradientImage;

fil::DetectEdges_AsPaths(image, ftl::NIL, fil::EdgeFilter::Canny,
2.0f, ftl::NIL, 60.0f, 30.0f, ftl::NIL, 30.0f, 0.0f, ftl::NIL, 0.0f, edges, gradientImage);

https://docs.fab-image.com/5.3/fil/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.fab-image.com/5.3/fil/introduction/FTL.html

Diagnostic Output Parameters

Due to efficiency reasons the diagnostic outputs are only computed when the diagnostic mode is turned on. This can be done by calling:
fil::EnableFilDiagnosticOutputs (true) ;
In your code you can check if the diagnostic mode is turned on by calling:

if (fil::GetFilDiagnosticOutputsEnabled())
{

I oo

}

Optional Outputs

Due to efficiency reasons computation of some outputs can be skipped. In function user can inform function that computation of
outMonolmage is not necessary and function can omit computation of this data.

the Header with last two optional parameters:

void fil::TestImage

(

fil::TestImageId: :Type inImageld,
ftl::0ptional<fil::Image&> outRgbImage = ftl::NIL,
ftl::Optional<fil::Image&> outMonoImage = ftl::NIL
)

Example of using optional outputs:

fil::Image rgb, mono;

// Both outputs are computed
fil::TestImage (fil: :TestImageld: :Baboon, rgb, mono) ;

// Only RGB image is computed
fil::TestImage (fil::TestImageld: :Baboon, rgb);

// Only mono image is computed
fil::TestImage (fil::TestImageld: :Baboon, ftl::NIL, mono);

In-Place Data Processing

Some functions can process data in-place, i.e. modifying the input objects instead of computing new ones. There are two approaches used for such
functions:

1. Some filters, e.g. the image , use "io" parameters, which work simultaneously as inputs and outputs. For example, the
following function invocation draws red circles on the image? object:

fil::DrawCircle (imagel, circle, ftl::NIL, fil::Pixel (255, 0, 0), style);

2. Some filters, e.g. , can be given the same object on the input and on the output. For example, the following function
invocation negates pixel values without allocating any additional memory:

fil::NegateImage (imagel, ftl::NIL, imagel);
Please note, that simple functions like can be executed even 3 times faster in-place than when computing a new output object.

Work Cancellation

Most of long-working functions can be cancelled using function. Cancellation technique is thread-safe, so function
can be called from different thread.

To check cancellation status use the function.

void ProcessingThread ()

{

while (!fil::IsCurrentWorkCancelled())

{
std::cout << "Iteration start" << std::endl;
fil::Delay(10000); // Function with cancellation support
std::cout << "Iteration complete" << std::endl;

}

std::cout << "Processing thread stop" << std::endl;

}

int main ()
{
fil::InitLibrary();
std::thread thread {ProcessingThread};

std::cout << "Press Enter to stop execution." << std::endl;
std::cin.get();

// Cancel work in ProcessingThread and in fil::Delay
fil::CancelCurrentWork () ;

thread.join() ;

return 0;

}

https://docs.fab-image.com/5.3/fil/functions/ImageBasics/TestImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageBasics/TestImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageBasics/TestImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/index.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/index.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/NegateImage.html
https://docs.fab-image.com/5.3/fil/functions/FILCommon/CancelCurrentWork.html
https://docs.fab-image.com/5.3/fil/functions/FILCommon/CancelCurrentWork.html
https://docs.fab-image.com/5.3/fil/functions/FILCommon/IsCurrentWorkCancelled.html

Library Initialization
For reasons related to efficiency and thread-safety, before any other function of the FIL library is called, the function should be called first:
int main ()
{
fil::InitLibrary();

/).
}

Debug Preview

For diagnostic purposes it is useful to be able to preview data of types Image and Region. You can achieve this by using functions from the
category. They can be helpful in debugging programs and displaying both intermediate and final data of such types.

fil::Image image;
fil::LoadImage ("hello.png", false, image);

// Show loaded image in new window.
fil: :DebugPreviewShowNewImage (image) ;

// Wait until window is closed.
fil: :DebugPreviewWaitForWindowsClose () ;

Fab Template Library

Fablmage Library is based on the Fab Template Library — a simplified counterpart of the C++ Standard Template Library, which avoids advanced
templating techniques mainly by using raw pointers instead of abstract iterators. This makes Fablmage Library portable to embedded platforms,
including the ones that do not support C++ templates fully.

Please note, that the following types should only be parametrized with fundamental types (int, float, etc.) or . Const
and/or reference types are also allowed, as long as template type accepts such type (e.g. Array<T> cannot be parametrized with reference type).

Array<T>

The Array<T> type strictly corresponds to std::vector<T>. It is a random-access, sequential container with automatic memory reallocation when
growing.

Here is a simplified version of the public interface is depicted:
Optional<T>

The Optional<T> type provides a consistent way of representing an optional value, something for which NULL pointers or special values (such as -1)
are often used. Many APls provide optional values using default values of parameters. This type is inspired by class from the
Boost Library, but is designed mostly for input parameters, not only for function results.

In Fablmage Library it is used to represent optional regions of interest in image processing operations and many other input parameters that can be
determined automatically when not provided by an user.

Documentation for this type is presented in

Sample use:

ftl::Optional<fil::Point2D> p;

p = fil::Point2D (10, 25); // normal value
p = ftl::NIL; // NIL value

if (p !'= ftl::NIL)

{

fil::Point2D q = p.Get(); // access to a non-nil value
p.Get().x = 15; // direct access to a field
}

Conditional<T>

This type of data is especially used to determine invalid results. Many functions in C return special value as -1 or NULL when their result is invalid.
Type Conditional<T> is very similar to Optional<T>, but it is mostly used in outputs.

Documentation for this type is presented in

Sample use:

ftl::Conditional<int> result;
fil::ParseInteger ("Testl", fil::NumberSystemBase::Base 10, result); // Parsing textual data

if (result != ftl::NIL) // If textual data is not valid integer result has value ftl::NIL
printf ("valid integer.");
else

printf ("Invalid integer. Value: %d", result.Get()):;

Dummy<T>

Dummy<T> class is used to create a temporary object that will be released after its use. It is mostly used to create a temporary object to pass its
reference to a function. Such temporary objects are helpful when not all values returned by a function are important and we don't plan to use them.

Sample use:

https://docs.fab-image.com/5.3/fil/functions/Configuration/InitLibrary.html
https://docs.fab-image.com/5.3/fil/functions/DebugPreview/index.html
https://docs.fab-image.com/5.3/fil/datatypes/TypeReference.html
https://docs.fab-image.com/5.3/fil/datatypes/Array.html
https://www.boost.org/doc/libs/1_47_0/libs/optional/doc/html/index.html
https://docs.fab-image.com/5.3/fil/datatypes/Optional.html
https://docs.fab-image.com/5.3/fil/datatypes/Conditional.html

fil::Region region;

fil::Circle2D circle = fil::Circle2D(50.0f, 50.0f, 50.0f);

fil::CreateCircleRegion (circle,

// Second parameter is not used.

fil::Segment2D minorAxis;
fil::RegionEllipticAxes (region,

std::cout << "Minor axis length:

ftl::NIL, 100, 100, region);

ftl::Dummy<fil::Segment2D>(), minorAxis);

" << minorAxis.Length() ;

2. Getting Started

Table of content:

e SDK Installation
e Project Configuration
e Using Library with CMake

This is just a placeholder to silence warnings about broken link.

SDK Installation

Requirements

Fablmage Library is designed to be a part of applications working under control of the Microsoft Windows operating system. Supported versions are:
7, 8 and 10, as well as the corresponding embedded editions.

To build an application using Fablmage Library, Microsoft Visual Studio environment is required. Supported versions are: 2015, 2017 and 2019.

Running the Installer

The installation process is required to copy the files to the proper folders and to set the environment variables used for building applications using
Fablmage Library.

After the installation, a license for Fablmage Library product has to be loaded. It can be done with the License Manager tool available in the Start
Menu.

To verify that the installation has been successful and the license works correctly, one can try to load, build and run example programs, which are
available from the Start Menu.

SDK Directories

Fablmage Library is distributed as a set of header files (.h), dynamic (.dll) and static (.lib) libraries. The libraries (static and dynamic) are provided in
versions for 32-bit and 64-bit system. The header files are common for both versions.

The picture below shows the structure of the directories containing headers and libraries included in Fabimage Library.

v Fablmage Library
The directories (installed in the Program Files system folder) being a part of Fabimage Library are

atl visualizers shortly described below.

v bin
Win32 o ftl_visualizers — a directory containing the visualizers for Microsoft Visual Studio Debugger of
o Fablmage Library data types.
X

e bin — a directory containing dynamic linked library files (FIL.dll) for 32|64-bit applications. The

D teti S h -)
oeumentatien libraries are common for all supported versions of Microsoft Visual Studio and for

include Debug|Release configurations. All the functions of Fabimage Library are included in the FIL.dIl
v [11b file.
Win32 o Documentation — a directory containing the documentation of Fablmage Library, including this
6l document.

e include — a directory containing all header (.h) files for Fabimage Library. Every source code file
that uses Fablmage Library needs the FIL.h header file (the main header file) to be included.

o lib — a directory containing static (.lib) libraries (FIL.lib) for 32|64-bit applications. The FIL.lib file
has to be statically-linked into the program that uses Fablmage Library. It acts as an intermediary
between the usage of Fablmage Library functions and the FIL.dIl file. The programmer creating
an application does not need to bother about DLL entry points and functions exported from the
FIL.dIl file. Fablmage Library is designed to be easy to use, so one only needs to link the FIL.lib
file and can use all the functions from the FIL.dll just as easy as local functions.

tools

o tools — a directory containing the License Manager tool helping the user to load the license for
Fablmage Library to the developer's computer.

\ﬁsta/7) containing simple example solutions using Fablmage Library. The examples are a good
way of learning, how to use Fablmage Library. They can be used as a base for more
complicated programs as well. The shortcut to the Examples directory can be found in the Start
Menu after the installation of Fabimage Library.

Library Architecture

Fablmage Library is split into four parts:

1. Fablmage Library - contains all functions for working with images.
2. Standard Library - contains all auxiliary functions like: file operations, XML editing or mathematical operations.
3. GenlCam Library - contains all GenlCam and GigE Vision functions.
4. Third Party Library - contains functions of third-party hardware producers.
The usage of the library is possible only when including one of the following header files:
e FlLh
e STD.h
e Genicam.h
e ThirdPartySdk.h

Environment and Paths

Dlrectorles) to flnd the header files, settings of the linker (Configuration Propertles | Linker | General | Additional Library Directories) to find the proper
version of the FIL.lib and in the configuration of Post-Build Event (Configuration Properties | Build Events | Post-Build Event | Command Line) to copy
the proper version of the FIL.dlI file to the output directory of the project. All the settings can be viewed in the simple example applications distributed

with Fabimage Library.

Project Configuration

General Information

Fablmage Library is designed to be used as a part of C++ projects developed with Microsoft Visual Studio in versions 2015-2019.

Creating a New Project
Microsoft Visual Studio 2015, 2017 and 2019

Fablmage Library is provided with a project template. To create a new project using Fablmage Library, start Microsoft Visual Studio and choose the
File | New| Project... command. The template called FIL 5.3 Project is available in the tab Installed | Templates | Other Languages | Visual C++.

Required Project Settings

All projects that use Fablmage Library need some specific values of the compiler and linker settings. If you want to use the Library in your existing
project or you are manually configuring a new project, please apply the settings listed below:

e Configuration Properties | General

o Character Set should be set to Use
e Configuration Properties | C/C++
o General

= Additional Include Directories should contain the 'S

¢ Configuration Properties | Linker
o General

] ﬁdditional Library Directories should contain the proper path to directory containing the FIL.lib file. The proper path is
H \i.

o Input

e Configuration Properties | Build Events
o Post-Build Event

s Command Line should contain:
setting is not mandatory, but the appllcatlon using Fablmage Library requires an access to the FIL.dll file and this is the easiest
way to fulfill this requirement.

Including Headers

Every source code file that uses Fablmage Library needs the: >1 directive. A proper path to the FIL.h file is set in the settings of
the compiler (described above), so there is no need to use the full path in the directive.

Distributing Fablmage Library with Your Application
Once the application is ready, it is time for preparing a distribution package or an installer. There are two requirements that needs to be fulfilled:

o The final executable file of the application needs to have access to the proper version (used by Win32 or x64 configuration) of the FIL.dll file.
Typically, the FIL.dIl file should be placed in the same directory as the executable.

e The computer that the application will run on needs a valid license for the use of Fablmage Library product. Licenses can be managed with the
License Manager application, that is installed with Fabimage Library Runtime package.

e A Iicense file (*.fikey) can be also manually copied to the end user's machine without installing Fablmage Library Runtime. It must be placed in
for the license file is
5. Remember that the license is valid per machine, so every computer

that runs the application needs a separate license file.

o Alternatively to the (*.fikey) files we support USB Dongle licenses.

Using Library with CMake

Library ships with CMake configuration modules. It makes the project portable, and easy to compile for Windows, linux or Android. The minimum
CMake version supported is 3.10 (for example shipped with Ubuntu bionic/18.04)

Quick Start

A simple template for CMakeLists. txt is presented below:

cmake minimum required (VERSION 3.10)
project (example)

find package (
FIL
for a specific version, uncomment the line below
#5.3
CONFIG
REQUIRED
)

copy binaries to build directory
copy_ fil()

add_executable (
executable name
example exec
source files
main.cpp

target_link libraries(
example_exec
PUBLIC
FIL

)

install user executable
install (TARGETS example exec)
install ALL FIL libraries
install_fil()

One can also copy one of the CMake examples, and modify to your needs. For further cmake use refer to . Be aware that
ubuntu 18.04 is the baseline distribution, so minimal CMake version is 3.10

Reference
package

CMake package is provided for windows installer and linux archive. Both should be usable after installation. Linux additionally ships with Android
libraries. The library is only discoverable using CONFIG mode, so it's sensible to restrict find package to that mode.

find package (
FIL
for a specific version, uncomment the line below
#5.3
CONFIG
REQUIRED

On Android to use system installed FIL it is necessary to add CMAKE_FIND ROOT PATH BOTH argument:
find package (FIL CONFIG REQUIRED CMAKE FIND ROOT PATH BOTH)
Possible packages:
e FIL - full library
e FIL_Lite - lite library
o \Weaver - deep learning inference library

install_fil

Install all FIL libraries when executing make install orninja install or building INSTALL project in Visual Studio. It accepts a L.IB argument
to override default installation directory. It requires find package (FIL...) callfirst.

find package (FIL CONFIG REQUIRED)

install fil()

By default it installs to $ { CMAKE _INSTALL PREFIX}/bin on Windows and $ {CMAKE INSTALL PREFIX}/1lib on Linux. When provided the LIB
argument it installs to $ {CMAKE_INSTALL PREFIX}/${LIB_ARGUMENT}

install fil(LIB "fil directory")
Possible variants:

e install fil()

e install fil lite()

e install weaver ()

https://cmake.org/documentation/

copy_fil

Copy all FIL libraries when compiling targets that depend on FIL to binary directory. By default it's $ {CMAKE BINARY DIR} or
${CMAKE_BINARY DIR}/$<CONFIG>on Windows. It requires find package (FIL...) callfirst.

find package (FIL CONFIG REQUIRED)

copy_fil()

Possible variants:
® copy fil()
® copy fil lite()

® copy weaver ()

3. Technical Issues

Table of content:

o |Interfacing with Other Libraries

e Loading Fablmage Studio Files (FIDATA)

e Working with GenlCam GenTL Devices

e Processing Images in Worker Thread

e Troubleshooting

e Memory Leak Detection in Microsoft Visual Studio
e FTL Data Types Visualizers

e Optimizing Image Analysis for Speed

e Libraries comparison

e Deep Learning Training API

Interfacing with Other Libraries

Fablmage Library contains the fil::Image class which represents an image. This article describes how to create an fil::iImage object with raw data
acquired from cameras, and how to convert it to image structures specific to other libraries.

Fablmage Library provides a set of sample converters. To use it in your program you should include a specific header file which is available in
Fablmage Library include directory (e.g. FILConverters/FIL_OpenCV.h). The list below presents all the available converters:

e Euresys
e MFC

e MvAcquire
e OpenCV
e Pylon

e QT

e SynView

An example of using MFC converters can be found in the Fablmage Library directory in My Documents (Examples\MFC Examples). Below is shown
also an OpenCV converter example.

Example: Converting Between fil::lmage and OpenCV Mat

It is also possible to convert fil::lmage to image structures from common libraries. The example code snippets below show how to convert an
fil::lImage object to other structures.

#include <opencv2/highgui/highgui.hpp>
#include <FILConverters/FIL_ OpenCV.h>

#include <FIL.h>

fil::Image inputImage, processedImage;
cv::Mat cvImage;

int thresholdvValue, rotateAngle;

//image processing

void ProcessImage ()

{

fil::Image imagel;

fil::ThresholdImage (inputImage, ftl::NIL, (float)thresholdvalue, ftl::NIL, 0.0, imagel);
fil::RotateImage (imagel, (float)rotateAngle, fil::RotationSizeMode::Fit,

fil::InterpolationMethod::Bilinear, false, processedImage);
}

// callback
void on_trackbar (int, void*)
{

ProcessImage () ;

fil::FilTmageToCVMat_ Linked (processedImage, cvImage);
cv: :imshow ("CV Result Window", cvImage);

int main (void)
{
// Load FIL image
fil::Image monoImage, rgbImage;
fil::TestImage (fil::TestImagelId: :Lena, rgbImage, monolmage) ;
fil::DownsampleImage (monoImage, 1, inputImage);
thresholdvValue = 128;
rotateAngle = 0;

// Create OpenCV Gui

cv: :namedWindow ("Settings Window", 1);

cv esizeWindow ("Settings Window"™, 300, 80);

cv reateTrackbar ("Threshold", "Settings Window", &thresholdvalue, 255, on_trackbar);
cv::createTrackbar ("Rotate", "Settings Window", &rotateAngle, 360, on_trackbar);

// set trackbar
on_trackbar (0, 0);

cv::waitKey (0) ;
return 0;

Example: fil::Image from pointer to image data

It is also possible to create an fil::Image object using a pointer to image data, without copying memory blocks. This, however, requires compatible
and proper information about the image being created has to be provided.

The constructor shown below should be used for this operation:

Image: :Image (int width, int height, int pitch, PlainType::Type type, int depth, void* data,
ftl::Optional< const fil::Region& > inRoi = ftl::NIL);

Please note that all of the XxxToXxx_Linked functions do not copy data and the user has to take care of freeing such data. See also the usage
example in OpenCV converter above. Functions FillmageToCVMat_Linked and CVMatToFillmage_Linked do not copy data.

Displaying Images Directly on WinAPI/MFC Device Context (HDC)

For convenience, there is also a function that directly displays an image on a WinAPI device context (HDC). This function is defined in the header
"FILConverters/FIL_Winapi.h" as:

https://docs.fab-image.com/5.3/fil/datatypes/Image.html#MemoryRepresentation

void DisplayImageHDC (HDC inHdc, fil::Image& inImage, float inZoomX = 1.0, float inZoomY = 1.0);

For sample program showing how to use this function, please refer to the official example in the "06 WinAPI tutorial" directory.

Loading Fablmage Studio Files (FIDATA)

Fablmage Studio has its own format for storing arbitrary objects - the FIDATA format. It is used for storing elements of the program (paths, regions
etc.) automatically, or manually when using "Export to FIDATA file" option or the SaveObject and LoadObject generic filters.

Fablmage Library can load and save several types of objects in FIDATA format. This is done using dedicated functions, two corresponding for each
supported type. The functions start with Load and Save and accept two parameters - a filename and an object reference - for loading or saving.

void LoadRegion

(

const File& inFilename, //:Name of the source file
Region& outRegion //:Deserialized output Region

)i

void SaveRegion
(
const Region& inRegion, //:Region to be serialized
const File& inFilename //:Name of the target file
)i

The supported types include:

e Region

e Profile

e Histogram

e SpatialMap

e EdgeModel

e GrayModel

e OcrMpModel
e OcrSvmModel
e Image*

Because the Loadlmage function is a more general mechanism for saving and loading images into common file formats (like BMP, JPG or PNG),
the functions for loading and saving £i1: : Image as FIDATA are different:

void LoadImageObject

(

const File& inFilename, //:Name of the source file
Image& outImage //:Deserialized output Image

)i

void SaveImageObject
(
const Image& inImage, //:Image to be serialized
const File& inFilename //:Name of the target file
)

Simple types like Integer, Real or String can be stored in files in textual form - by setting inStreamMode to Text when using SaveObject - this
can be read by formatted input output in C/C++ (for example using functions from the scanf family).

Working with GenlCam GenTL Devices

Introduction

GenlCam GenTL is a standard that defines a software interface encapsulating a transport technology and that allows applications to communicate
with general vision devices without prior knowledge of its communication protocol. GenTL supporting application (a GenTL consumer) is able to load
a third party dynamic link library (a GenTL provider) that is a kind of a "driver" for a vision device. GenlCam standard allows to overcome differences
with communication protocols and technologies, and allows to handle different devices in same common way. However application still needs to be
aware of differences in device capabilities and be prepared to cooperate with specific device class or device model.

Fablmage Library contains a built-in GenTL subsystem that helps and simplifies usage of a GenTL device in vision application. FIL GenTL
subsystem helps in loading provider libraries, enumerating GenTL infrastructure, managing acquisition engine and frame buffers, converting image
formats and implements GenAPl interface.

In order to be able to use a GenTL provider it needs to be properly registered (installed) in local system. Usually this task is performed by an installer
supplied by a device vendor. Please note that a 32bit application requires a 32 bit provider library and a 64 bit application requires respectively a 64 bit
provider library. A registered GenTL provider is characterized by a file with ".cti" extension. Path to cti library containing folder is stored in an
environmental variable named "GENICAM_GENTL32_PATH" ("GENICAM_GENTL64_PATH" for 64 bit providers).

Basic Usage

Functions designed for GenTL support can be found in and categories. A basic application will first use a

function to open a device instance (to establish the connection) and to request a handle for further operations on the device. This handle can be than
used with functions to access device specific configuration and manage them. When the device identifiers are not fully known, or can
dynamically change at runtime a function can be first used to enumerate available GenTL devices.

To start streaming video out of configured device a function must be executed. After this sequentially upcoming images can
be retrieved with or functions. Images will be stored in an input FIFO queue. Not retrieved images
(on queue overflow) will be dropped starting from the oldest one. To stop image acquisition a function should be called.
Image acquisition can be stopped and than started again multiple times for same device with eventual configuration change in between (some
parameters can be locked for time of image streaming).

To release the device instance its handle need to be closed with function.

https://docs.fab-image.com/5.3/fil/functions/GenTL/index.html
https://docs.fab-image.com/5.3/fil/functions/GenApi/index.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_OpenDevice.html
https://docs.fab-image.com/5.3/fil/functions/GenApi/index.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_FindDevices.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_StartAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_ReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_TryReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_StopAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_CloseHandle.html

Advanced Usage

When more information need to be known about GenTL environment its structure can be explored using
. s functions.

When extended information or configuration, specific for GenTL provider or transport technology need to be accessed, following functions can be
considered:

Additional Requirements

When using GenTL subsystem of Fablmage Library a "Genicam_Kit.dIl" file is required to be in range of application. This file (selected for 32/64 bit)
can be found in Fablmage Library SDK "bin" directory.

Processing Images in Worker Thread
Introduction to the Problem

Fablmage Library is a C++ library, that is designed for efficient image processing in C++ applications. A typical application uses a single primary
thread for the user interface and can optionally use additional worker threads for data processing without freezing the main window of the application.
Images processing can be a time-consuming task, so performing it in a separate worker thread is recommended, especially for processing
performed in continuous mode.

Processing images in a worker thread is asynchronous and it means that accessing the resources by the worker thread and the main thread has to
be coordinated. Otherwise, both threads could access the same resource at the same time, what would lead to unpredictable data corruption. The
typical resource that has to be protected to be thread-safe is the image buffer. Typically, the worker thread of the vision application has a loop. In this
loop it grabs images from a camera and does some kind of processing. Images are stored in memory of a buffer as fil::Image data. The main thread
(Ul thread) presents the results of the processing and/or images from the camera. It has to be ensured that the images are not read by the Ul thread
and processed by the worker thread at the same time.

Please note that the GUI controls should never be accessed directly from the worker thread. To display the results of the worker thread processing in
the GUI, a resource access control has to be used.

Example Application and Image Buffer Synchronization

This article does not present the rules of multithreaded programming. It only focuses on the most typical aspects of it, that can be met when writing
applications with Fablmage Library. An example application that uses the main thread and the worker thread can be found among the examples
distributed with Fablmage Library. It is called MFC Simple Streaming and the easiest way to open it is by opening Examples directory of Fablmage
Library from the Start Menu. The application is located in 03 GigE Vision tutorial subdirectory. It is a good template for other vision applications
processing images in a separate thread. It is written using MFC, but the basics of multithreading stay the same for all other technologies.

There are many techniques of synchronization of a shared resources access in a multithreading environment. Each of them is good as long as it
protects the resources in all states that the application can be in and as long as it properly handles thrown exceptions, application closing etc.

In the example application, the main form of the application has a private field called m_videoWorker that represents the worker thread:

class ExampleDlg : public CDialog
{
private:

(...)

GigEVideoWorker m videoWorker;
(c00)
}

The GigEVideoWorker class contains the image buffer:

class GigEVideoWorker

{
(000)

private:

£il::Image m_imageBuffer;
(c00)

}

This is the image buffer that contains the image received from the camera that needs to be protected from parallel access from worker thread and
from the main thread that displays the image in the main form. The access synchronization is internally achieved using critical section and
EnterCriticalSection and LeaveCriticalSection functions of the Windows operating system. When one thread calls the
GigEVideoWorker::LockResults() function, it enters the critical section and no other thread can access the image buffer until the thread that got the
lock calls GigEVideoWorker::UnlockResults(). When one thread enters the critical section, other threads that try to enter the critical section will be
suspended (blocked) until the one leaves the critical section.

Using functions like GigEVideoWorker::LockResults() and GigEVideoWorker::UnlockResults() is a good choice for protecting the image buffer from
accessing by multiple threads, but what if due to an error in the code the resource is locked but never unlocked? It can happen for example in a
situation when an exception is thrown inside the critical section and the code lacks the try/catch statement in the function that locks and should
unlock the resource. In the example application this problem has been resolved using the RAIl programming idiom. RAIl stands for Resource
Acquisition Is Initialization and in short it means that the resource is acquired by creating the synchronization object and is released by destroying it.
In the example application being described here, there is the class called VideoWorkerResultsGuard. It exclusively calls the previously mentioned
GigEVideoWorker::LockResults() and GigEVideoWorker::UnlockResults() functions in constructor and destructor. The instance of this
VideoWorkerResultsGuard class is the synchronization object. The code of the class is listed below.

https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_EnumLibraries.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_GetLibraryDescriptor.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_EnumLibraryInterfaces.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_GetInterfaceDescriptor.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_OpenLibrarySystemModuleSettings.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_OpenInterfaceModuleSettings.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_OpenDeviceModuleSettings.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_OpenDeviceStreamModuleSettings.html

class VideoWorkerResultsGuard
{

private:
GigEVideoWorker& m_object;

VideoWorkerResultsGuard(const VideoWorkerResultsGuard&); // = delete

public:
explicit VideoWorkerResultsGuard(GigEVideoWorker& object)
: m_object (object)
{
m_object.LockResults() ;
}

~VideoWorkerResultsGuard (
{
m_object.UnlockResults() ;
}

}i

It can be easily seen that when the object of VideoWorkerResultsGuard is created, the thread that creates it calls the LockResults() function and by
that it enters the critical section protecting the image buffer. When the object is destroyed, the thread leaves the critical section. Please note that the
destructor of every object is automatically called in C++ when the automatic variable goes out of scope. It also covers the cases, when the variable
goes out of scope because of the exception thrown from within of the critical section. Using RAIl pattern allows programmer to easily synchronize
the access to shared resources from multiple threads. When a thread needs to access a shared image buffer, it has to create the
VideoWorkerResultsGuard object and destroy it (or let it be destroyed automatically when the object goes out of scope) when the access to the
image buffer is no longer needed. The example usage of this synchronization looks as follows:

// Retrieve the results under lock.
{
VideoWorkerResultsGuard guard(m_videoWorker) ;
()
fil::FILImageToCImage (m_videoWorker.GetLastResultData(), width, height, false, m lastImage);
(ERR))
}

The method GetlLastResultData() returns the reference to the shared image buffer. It can be safely used thanks to the usage of
VideoWorkerResults Guard object.

Notifications about Image Ready to Display

Another issue that needs to be considered in a typical application that processes images and uses a worker thread is notifying the main thread that
the image processed by the worker thread is ready to display. Such notifications can be implemented in several ways. The one that has been used in
the example application is using system function PostMessage(). When the worker thread has the image ready for presentation, it copies it to the
m_lastResultData buffer (this is the protected one) and posts the notification message to the main window of the application:

//
// TODO: Compute the result data and put them in the shared buffer (just copy the source image) .

//

m_lastResultData = m_imageBuffer;

// Send notification message

if (PostMessage(m hNotificationWindow, m notificationMessage, 0, NULL))
{

m_lastResultProcessed = false;

}

The message is received by the main (Ul) thread. Once it's received, the main thread acquires the access to the shared image buffer by creating the
VideoWorkerResults Guard object. Then, the image can be safely displayed.

The worker thread has a flag called m_/astResultProcessed. The flag set to false indicates that the notification about image ready to display had
been posted to the main thread but the main thread has not processed (displayed) the image yet. The flag is set to false just after posting the
notification message. The main thread sets the flag back to true using NotificationGivefeedback() function:

void GigEVideoWorker::NotificationGiveFeedback (void)
{

VideoWorkerResultsGuard guard(*this);
m_lastResultProcessed = true;

}

Once the worker thread has sent the notification message, it can acquire and perform the next frame from the camera, but there's no point in
sending the next notification until the previous is performed by the Ul thread. Sending the new notifications without performing the old ones could lead
to cumulating them in the messages queue of the main window. This is why the worker thread of the example application checks if the previous
notification message has been performed and sends the next one only if the processing of the previous is finished:

if (m_lastResultProcessed && NULL != m hNotificationWindow)
{

// Create the result in shared buffers under lock.
VideoWorkerResultsGuard guard(*this) ;

(c00)
}

Please note that the flag is also protected by the VideoWorkerResultsGuard synchronization object, so the main thread cannot set it to true in the
moment directly after the worker thread posted the notification message.

Issues of Multithreading

There are two primary issues to consider when using worker thread(s). The first one is destroying data by unsynchronized access from multiple
threads and the second one is a deadlock that can appear when there are two (or more) resources to be synchronized.

Securing data integrity by the thread synchronization mechanisms has been shortly described in this article and is implemented in the example
application distributed with Fablmage Library. As a rule of a thumb, please assume that every image that can be accessed from more then one

thread should be protected by some kind of synchronization. We recommend the standard C++ RAIl pattern as an easy to use and secure solution.

The example application described in this article contains only one resource — a critical section represented by the VideoWorkerResultsGuard class,
but of course there may exist some applications where there is more then one resource to share. In such cases, the synchronization of the threads
has to be implemented very carefully because there is a danger of deadlock that can be a result of bad implementation. If your application freezes
(stops responding) and you have more then one synchronized resource, please review the synchronization code.

Troubleshooting

This article describes the most common problems that might appear when building and executing programs that use Fablmage Library.
Problems with Building

error LNK2019: unresolved external symbol _LoadlmageA referenced in function
error C2039: ‘LoadlmageA': is not a member of fil'

The problem is related to including the "windows.h" file. It defines a macro called Loadlmage, which has the same name as one of the functions of
Fablmage Library. Solution:

¢ Don'tinclude both "windows.h" and "FIL.h" in a single compilation unit (cpp file).

e Use #undef LoadImage after including "windows.h".
error LNK1123: failure during conversion to COFF: file invalid or corrupt

If you encounter this problem, just disable the incremental linking (properties of the project | Configuration Properties | Linker | General | Enable
Incremental Linking, set to No (/INCREMENTAL:NO)). This is a known issue of VS2010 and more information can be found on the Internet.
Installing VS2010 Service Pack 1 is an alternative solution.

Exceptions Thrown in Run Time
Exception from the fil namespace is thrown

Fablmage Library uses exceptions to report errors in the run-time. All the exceptions are defined in fil namespace and derive from fil::Error. To solve
the problem, add a try/catch statement and catch all fil::Error exceptions (or only selected derived type). Every fil::Error object has the Message()
method which should provide you more detailed information about the problem. Remember that a good programming practice is catching C++
exceptions by a const reference.

try
{
// your code here
}
catch (const ftl::Erroré& er)
{
cout << er.Message();
}

High CPU Usage When Running FIL Based Image Processing

When working with some FIL image processing functions it is possible that the reported CPU usage can reach 50~100% across all CPU cores even
in situations when the actual workload does not justify that hight CPU utilization. This behavior is a side effect of a parallel processing back-end
worker threads actively waiting for the next task. Although the CPU utilization is reported to be high those worker threads will not prevent other task to
be executed when needed, so this behavior should not be a problem in most situations.

For situations when it is not desired this behavior can be changed (e.g. when profiling the application, performance testing or in any situation, when

high CPU usage interfere with other system). To block the worker threads from idling for extended period of time the environment variable
OMP_WAIT_POLICY must be set to the value PASSIVE, before the application is started:

set OMP WAIT POLICY=PASSIVE

This variable is checked when the DLLs are loaded, so setting it from the application code might not be effective.

Memory Leak Detection in Microsoft Visual Studio

When creating applications using Fablmage Library in Microsoft Visual Studio, it may be desirable to enable automated memory leak detection
possible in Debug builds. The details of using this feature is described here:

Some project types, notably MFC (Microsoft Foundation Classes) Windows application projects, have this mechanism enabled by default.

False Positives of Memory Leaks in FIL.dlI

Using a default configuration, as described in can lead to false positives of memory leaks, which come from the FIL.dll library.
The output of a finished program can look similar to the following:

(...)

The thread 'Win32 Thread' (0x898) has exited with code 0 (0x0) .
The thread 'Win32 Thread' (0x168c) has exited with code 0 (0x0) .
Detected memory leaks!

Dumping objects ->

{5573} normal block at 0x00453DB8, 8 bytes long.

Data: < > 01 00 00 00 00 00 00 00
{5572} normal block at 0x00453D68, 20 bytes long.
Data: <D]NU =E > 44 5D 4E 55 CD CD CD CD 02 00 00 00 B8 3D 45 00

{5571} normal block at 0x00453C18, 4 bytes long.
Data: <X NU> 58 06 4E 55
(co00)

These are not actual memory leaks, but internal resources of FIL.dIl, which are not yet released when the memory leaks check is being run.
Because there are many such allocated blocks reported, the actual memory leaks in your program can pass unnoticed.

https://msdn.microsoft.com/en-us/library/x98tx3cf.aspx
https://docs.fab-image.com/5.3/fil/getting_started/ProjectConfiguration.html

Solution: Delayed Loading of FIL.dlI

To avoid these false positives, FIL.dIl should be configured to be delay loaded.
Configuration Properties » Linker » Input:

This can be done in the Project Properties, under

-
Fmm = Property Pages

Lonfiguration: |Active(Dehug] * | Platform: IAct'rveﬂNirBE) z; | I Configuration Manager.., |
» Commaon Properties [Additional Dependencies FIL Iib
4 Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries
Debugging Module Definition File
VC+ + Directories Add Module to Assembly
LG Embed Managed Resource File
4 Linker Force Symbol References
General Delay Loaded Dils FiL.dll E'
InpuT. . Assembly Link Resource
Manifest File
Debugging
I Systemn
Optimization
Embedded IDL
Advanced

Command Line
Manifest Tool
- Resources
XML Document Generator

& Browse Information
| Build Events
- Custom Build Step

| Delay Loaded Dils
| The /DELAYLOAD option causes delayed loading of DLLs. The dliname specifies a DLL to delay load.

OK

(

J| Cancel |[Apply

Further Consequences

With this configuration, your program will not try to load FIL.dll until it uses the first function from Fablmage Library. This will be also connected with
license checking.

The program will stop if FIL.dll is missing: if FIL.dIl was not delay loaded, this would happen at start time (the program would refuse to run). This
allows the program to work without FIL.dll, and use it only when it is available. The availability of FIL.dll can be checked beforehand, using LoadLibrary
or LoadLibraryEx functions.

FTL Data Types Visualizers

Data Visualizers

Data visualizers present data during the debugging session in a human-friendly form. Microsoft Visual Studio allows users to write custom
visualizers for C++ data. Fablmage Library is shipped with a set of visualizers for the most frequently used FTL data types: fil::String, ftl::Array,
ftl::Conditional and ftl::Optional.

Visualizers are automatically installed during installation of Fablmage Library and are ready to use, but they are also available at ftl_visualizers
subdirectory of Fablmage Library installation path.

For more information about visualizers, please refer to the MSDN.
Example FTL data visualization

Please see the example variables definition below and their visualization without and with visualizers.

ftl:
itell g
ftl:

ftl:

:String str L"Hello world";
:Conditional nil ftl::NIL;
:Conditional conditionalFive
:Array array (3, 5);

5;

Data preview without FTL visualizers installed:

Mame Value Type
I & str {data={heapbuf=0x0051f838 {72} stackbuf=0:0040fe00 {63544, 51,0,0,0,0, 0, 0} } uses_heap, fi::String
[@ nil {in} fil::Conditicnal <int>
[@ conditionalF {...} fil:: Conditional <int>
4 @ array {data=0x005119e8 {5} size=3 capacity=3 } f:: Array<int=
I» @5 data 0x00511968 {5} int*
W size 3 unsigned int
&; capacity 3 unsigned int

The same data presented using FIL visualizers:

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://msdn.microsoft.com/en-us/library/zayyhzts.aspx

Watch1 > o x

Mame Value Type
[@ str Helle world il::String
I @ nil il fi:: Conditional <int>
I @ conditionalF 5 fil:: Conditional <int>
4 & array {Count=3} i Array<int=

@ Count 3 unsigned int

@ [0] 5 int

@ [1] 5 int

@ [2] 3 int

I @ [Raw Viev 0:0044f32¢ {data=0:002919e8 {5} size=3 capacity=3 } fil:: Array<int> *

Image Watch extension

For Microsoft Visual Studio 2015, 2017 and 2019 an extension Image Watch is available. Image Watch allows to display images during debugging
sessions in window similar to "Locals" or "Watch". To make Image Watch work correctly with fil::Image type, Fablmage Library installer provides
fil::lmage visualizer for Inage Watch. If one have Image Watch extension and FIL installed, preview of images can be enabled by choosing "View-
>Other Windows->Image Watch" from Microsoft Visual Studio menu.

fil::Image description for Image Watch extension is included in ftl.natvis file, which is stored in ft/_visualizers folder in Fablmage Library installation
directory. ftl.natvis file is installed automatically during Fablmage Library installation.

When program is paused during debug session, all variables of type fil::iImage can be displayed in Image Watch window, as shown below:

A Publish «

Image displayed inside Image Watch can be zoomed. When the close-up is large enough, decimal values of pixels' channel will be displayed.
Hexadecimal values can be displayed instead, if appropriate option from context menu is selected.

e oo S e e e i * =33
O Locals @ Watch 64, 00x

512451; §22:8 12238 1 238 233 238 241 243 243

fi}:}.-fs [RG8] 151 180 189 195 219 218

152 179 183 192 201 206

fil:image

232 231 237 249 244 245

153 174 186 193 212 217

155 169 178 195 203 207

231 232 236 243 242 244

148 171 181 204 206 218

145 178 183 194 198 207

229 232 234 243 244 244

142 168 187 283 218 218

141 170 181 200 195 2087

231 233 238 241 244 244

140 168 188 200 285 216

140 157 182 191 194 207

220 ; 228 228 233 239 241 245 243

99 141 168 198 197 285 213

111 134 166 176 189 192 203

Image Watch is quite powerful tool - one can copy address of given pixel, ignore alpha channel and much more. All options are described in its
documentation, which is accessible from the Image Watch site at:

e Image\Watch 2019 - for Microsoft Visual Studio 2019
e Image\Watch 2017 - for Microsoft Visual Studio 2017

e |mage\Vatch - for older versions of Microsoft Visual Studio
Optimizing Image Analysis for Speed

General Rules
Rule #1: Do not compute what you do not need.

e Use image resolution well fitted to the task. The higher the resolution, the slower the processing.
e Use the inRoi input of image processing functions to compute only the pixels that are needed in further processing steps.

o [f several image processing operations occur in sequence in a confined region then it might be better to use Cropimage at first.

https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2019
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2017
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImage.html

e Do not overuse of types other than UInt8 (8-bit).
e Do not use multi-channel images, when there is no color information being processed.

o If some computations can be done only once, move them before the main program loop, or even to a separate function.

Rule #2: Prefer simple solutions.

e Do not use if more simple techniques as or would suffice.
o Prefer pixel-precise image analysis techniques () and the Nearest Neighbour (instead of Bilinear) image interpolation.
e Consider extracting higher level information early in the program — for example it is much faster to process than

Rule #3: Mind the influence of the user interface.

o Note that displaying data in the user interface takes much time, regardless of the Ul library used.

e Mind the Diagnostic Mode. Turn it off whenever you need to test speed. Diagnostic Mode can be turn off or on by
function. One can check, if Diagnostic Mode is turned on by GetFilDiagnosticOutputsEnabled function.

o Before optimizing the program, make sure that you know what really needs optimizing. Measure execution time or use a profiler.

Common Optimization Tips
Apart from the above general rules, there are also some common optimization tips related to specific functions and techniques. Here is a check-list:

o Template Matching: Prefer high pyramid levels, i.e. leave the inMaxPyramidLevel set to ftl::NIL, or to a high value like between 4 and 6.

e Template Matching: Prefer inEdgePolarityMode set not to Ignore and inEdgeNoiseLevel set to Low.

e Template Matching: Use as high values of the inMinScore input as possible.

o Template Matching: If you process high-resolution images, consider setting the inMinPyramidLevel to 7 or even 2.

e Template Matching: When creating template matching models, try to limit the range of angles with the inMinAngle and inMaxAngle inputs.

e Template Matching: Consider limiting inSearchRegion. It might be set manually, but sometimes it also helps to use Region Analysis
techniques before Template Matching.

e Do not use these functions in the main program loop: s s s

¢ If you always transform images in the same way, consider functions from the category instead of the ones
from .

e Do not use image local transforms with arbitrary shaped kernels: ,
. Consider the alternatives without the "_AnyKernel" suffix.

. can be particularly slow. Use Gaussian or Mean smoothing instead, if possible.
Library-specific Optimizations
There are some optimization techniques that are available only in Fablmage Library and not in Fablmage Studio. These are:
In-Place Data Processing
See:
Re-use of Image Memory

Most image processing functions allocate memory for the output images internally. However, if the same object is provided in consecutive iterations
and the dimensions of the images do not change, then the memory can be re-used without re-allocation. This is very important for the performance
considerations, because re-allocation takes time which is not only significant, but also non-deterministic. Thus, it is highly advisable to move the
image variable definition before the loop it is computed in:

// Slow code
while (...)
{
Image image2;
ThresholdImage (imagel, ftl::NIL, 128.0f, ftl::NIL, 0.0f, image2);
}

// Fast code
Image image2;
while (...)
{
ThresholdImage (imagel, ftl::NIL, 128.0f, ftl::NIL, 0.0f, image2);
}

// Fast code (also in the first iteration)
Image image2 (752, 480, PlainType::UInt8, 1, ftl::NIL); // memory pre-allocation (dimensions must be known)
while (...)
{
ThresholdImage (imagel, ftl::NIL, 128.0f, ftl::NIL, 0.0f, image2);
}

Skipping Background Initialization

Almost all image processing functions of Fablmage Library have an optional inRoi parameter, which defines a region-of-interest. Outside this region
the output pixels are initialized with zeros. Sometimes, when the rois are very small, the initialization might take significant time. If this is an internal
operation and the consecutive operations do not read that memory, the initialization can be skipped by setting IMAGE_DIRTY_BACKGROUND flag in
the output image. For example, this is how dynamic thresholding is implemented internally in FIL, where the out-of-roi pixels of the blurred image are
not meaningful:

Image blurred;

blurred.AddFlags (IMAGE DIRTY BACKGROUND) ;

SmoothImage Mean (inImage, inRoi, inSourceRoi, ftl::NIL, KernelShape::Box, radiusX, radiusY, blurred);
ThresholdImage Relative (inImage, inRoi, blurred, inMinRelativeValue, inMaxRelativeValue, inFuzziness, outMonoImage);

https://docs.fab-image.com/5.3/fil/datatypes/Image.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/TemplateMatching.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/datatypes/Image.html
https://docs.fab-image.com/5.3/fil/functions/FILCommon/EnableFilDiagnosticOutputs.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ErodeImage_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Mean_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.fab-image.com/5.3/fil/introduction/ProgrammingConventions.html#inplace

Library Initialization

Before you call any FIL function it is recommended to call the function first. This function is responsible for precomputing library's global
data. If it is not used explicitly, it will be called within the first invocation of any other FIL function, taking some additional time.

Configuring Parallel Computing

The functions of Fablmage Library internally use multiple threads to utilize the full power of multi-core processors. By default they use as many
threads as there are physical processors. This is the best setting for majority of applications, but in some cases another number of threads might
result in faster execution. If you need maximum performance, it is advisable to experiment with the function with both
higher and lower number of threads. In particular:

o If the number of threads is higher than the number of physical processors, then it is possible to utilize the Hyper-Threading technology.

o If the number of threads is lower than the number of physical processors (e.g. 3 threads on a quad-core machine), then the system has at
least one core available for background threads (like image acquisition, GUI or computations performed by other processes), which may
improve its responsiveness.

Configuring Image Memory Pools

Among significant factors affecting function performance is memory allocation. Most of the functions available in Fablmage Library re-use their
memory buffers between consecutive iterations which is highly beneficial for their performance. Some functions, however, still allocate temporary
image buffers, because doing otherwise would make them less convenient in use. To overcome this limitation, there is the function

which can turn on a custom memory allocator for temporary images.

There is also a way to pre-allocate image memory before first iteration of the program starts. For this purpose use the
function at the end of the program, and — after a the program is executed — copy its outPoolSizes value to the input of a
function executed at the beginning. In some cases this will improve performance of the first iteration of program.

Using GPGPU/OpenCL Computing

Some functions of Fablmage Library allow to move computations to an OpenCL capable device, like a graphics card, in order to speed up execution.
After proper initialization, OpenCL processing is performed completely automatically by suitable functions without changing their use pattern. Refer to
"Hardware Acceleration” section of the function documentation to find which functions support OpenCL processing and what are their requirements.
Be aware that the resulting performance after switching to an OpenCL device may vary and may not always be a significant improvement relative to
CPU processing. Actual performance of the functions must always be verified on the target system by proper measurements.

To use OpenCL processing in Fablmage Library the following is required:

e a processing device installed in the target system supporting OpenCL C language in version 1.1 or greater,
e a proper and up-to-date device driver installed in the system,

e a proper OpenCL runtime software provided by its vendor.
OpenCL processing is supported for example in the following functions: , , ,

To enable OpenCL processing in functions an function must be executed at the beginning of a program. Please refer to
that function documentation for further information.

Libraries comparison

Introduction

The below table summarizes mutually corresponding functions between OpenCV, Halcon and Fablmage Library (FIL). Feel free to use this table
when porting your program from one library to another. Please note, however, that in most cases the corresponding functions may not give the same
results as their implementations are different in details. Quite often also the range of parameters exposed to the user will be different.

Most important general differences are:

e OpenCV does not have any data type for regions, so binary images must be used instead. Halcon has regions with unspecified
implementation and which do not have specific outer dimensions. At the same time Fablmage Studio provides Region data type which is
always RLE-encoded and has specific dimensions (width and height) in the same way as images have. Thus you can consider regions to be
more efficiently encoded binary images.

e The representation of multi-channel images is very similar in OpenCV and in Fablmage Studio. It is so called interleaved representation, while
Halcon focuses on planar images (each channel is represented in a separate memory fragment).

e The three libraries perform spatial image filters differently in areas close to the image borders. In OpenCV one can choose between different
methods of extrapolating boundary pixels. Halcon always the boundary pixel is considered repeated beyond the image range. In Fabimage
Studio, spatial filters are performed by considering only the pixels that are in the image range.

Image Acquisition

FIL provides dedicated support for GenlCam and GlgE Vision industrial standards, as well as for specific camera brands - using SDK from their
manufacturers. See also See also

OpenCV Halcon FIL Module Comment
\ideoCapture::open grab_image_start Genicam
- - - Genicam
\ideoCapture:release close_framegrabber Gen!cam
Genicam
\ideoCapture::,grab grab_image Genicam
- - Genicam
. Genicam
= grab_image_async it

Image Processing (Part 1)

Here is a list of fundamental image transformations available in almost any library.

https://docs.fab-image.com/5.3/fil/functions/Configuration/InitLibrary.html
https://docs.fab-image.com/5.3/fil/functions/Configuration/ControlParallelComputing.html
https://docs.fab-image.com/5.3/fil/functions/Configuration/ControlImageMemoryPools.html
https://docs.fab-image.com/5.3/fil/functions/Configuration/InspectImageMemoryPools.html
https://docs.fab-image.com/5.3/fil/functions/Configuration/ChargeImageMemoryPools.html
https://docs.fab-image.com/5.3/fil/functions/ImageColorSpaces/RgbToHsi.html
https://docs.fab-image.com/5.3/fil/functions/ImageColorSpaces/HsiToRgb.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/Configuration/FisFilter_InitGPUProcessing.html
https://docs.fab-image.com/5.3/fil/functions/CameraSupport/index.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_StartAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_StartAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_StopAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_StopAcquisition.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_ReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_ReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/GenTL/GenTL_TryReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_TryReceiveImage.html

OpenCV

imread
imwrite

addWeighted
subfract
bitwise_and
absdiff

divide

multiply

add
convertScaleAbs
cVSubRS
convertScaleAbs
max

min

resize, pyrDown

resize
warpAfiine

warpAffine

flip, transpose

cvtColor
calcHist
rectangle
circle

Halcon

read_image
write_image
gen_image3
gen_image1_extern
get grayval
add_image
sub_image
paint_gray
abs_diff_image
div_image
mult_image
scale_image
scale_image
invert_image
scale_image
max_image
min_image

zoom_image_size

zoom_image_factor
rotate_image

affine_trans_image

crop_rectangle1

mirror_image

compose3
rgb1_to_gray
rgb3_to_gray
decompose3
access_channel

trans_from_rgb

add_noise_white
gray_histo

draw_point
draw_rectangle1_mod
draw_circle_mod
paint_region
set_draw

gen_gauss_pyramid

binocular_disparity, binocular_distance

Image Processing (Part Il)

FIL

Loadlmage
Sawelmage
Makelmage
Makelmage
GetlmagePixel
Addimages
Subtractimages
Composelmages
Differencelmage
Dividelmages
Multiplyimages
AddTolmage
RescalePixels
Negatelmage
Multiplyimage
Maximumimage
Mnimumlmage

Resizelmage
Downsamplelmage

Resizelmage_Relative
Rotatelmage

Translatelmage
Shearlmage

TranslatePixels
Transposelmage

Croplmage
CroplmageToRectangle

Mrrorimage
Transposelmage

MergeChannels
AverageChannels_\Weighted
AverageChannels_Weighted
SplitChannels
SplitChannels

RgbToHsv
HsvToRgb

AddNoiseTolmage
ImageHistogram

DrawPoint

DrawRectangle

DrawCircle
DrawRegions_MultiColor
DrawRegion

Joinimages
CreatelmagePyramid_Gauss
ColorDistancelmage

Comparelmages
ImageCorrelation
ImageCorrelationlmage

Expaintimage_Bomemann
Expaintimage_Telea

Module

FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationBasic

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationBasic
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationBasic
FoundationPro

FoundationPro
FoundationPro
FoundationPro

FoundationPro
FoundationPro

More advanced image processing tools, including spatial filtering and transformations.

Comment

See also many other functions in Image Color Spaces

https://docs.fab-image.com/5.3/fil/functions/ImageIO/LoadImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageIO/SaveImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageBasics/MakeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageBasics/MakeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageBasics/GetImagePixel.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/AddImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/SubtractImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/ComposeImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/DifferenceImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/DivideImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/MultiplyImages.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/AddToImage.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/RescalePixels.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/NegateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/MultiplyImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/MaximumImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/MinimumImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ResizeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/DownsampleImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ResizeImage_Relative.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/RotateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TranslateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ShearImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TranslatePixels.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransposeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/MirrorImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransposeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageConversions/MergeChannels.html
https://docs.fab-image.com/5.3/fil/functions/ImageConversions/AverageChannels_Weighted.html
https://docs.fab-image.com/5.3/fil/functions/ImageConversions/AverageChannels_Weighted.html
https://docs.fab-image.com/5.3/fil/functions/ImageConversions/SplitChannels.html
https://docs.fab-image.com/5.3/fil/functions/ImageConversions/SplitChannels.html
https://docs.fab-image.com/5.3/fil/functions/ImageColorSpaces/RgbToHsv.html
https://docs.fab-image.com/5.3/fil/functions/ImageColorSpaces/HsvToRgb.html
https://docs.fab-image.com/5.3/fil/functions/ImageColorSpaces/index.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/AddNoiseToImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageHistogram.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawPoint.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawRectangle.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawCircle.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawRegions_MultiColor.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/JoinImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CreateImagePyramid_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ColorDistanceImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/CompareImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ImageCorrelation.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/ExpaintImage_Bornemann.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/ExpaintImage_Telea.html

OpenCV

cvSmooth
cvSmooth

dilate
erode
close
open
filter2D
sobel
sobel

inpaint

threshold

watershed
normalize

Linelterator

minMax_oc

warpAffine

linearPolar
linearPolar

LUT

meanStdDev
dft
dft

Region Analysis

Halcon

mean_image
gauss_image
gen_gauss_filter

smooth_image

median_image

midrange_image
rank_image
bilateral_filter
gray_dilation
gray_erosion
gray_closing_shape
gray_opening_shape
conwol_image
derivate_gauss
sobel_amp
sobel_dir

prewitt_ amp
prewitt_dir
diff_of_gauss
emphasize
illuminate
inpainting_texture
inpainting_ct
threshold
hysteresis_threshold
dyn_threshold
histo_to_thresh
watersheds_threshold
equ_histo_image

measure_projection
tile_images

local_max

affine_trans_image
vector_angle_to_rigid

affine_trans_point_2d

hom_mat2d_identity
hom_mat2d_rotate
hom_mat2d_translate
affine_trans_pixel
polar_trans_image_ext
polar_trans_image_inv
projective_trans_image
lut_trans

fill_interlace
deviation_image
fit_image

fit_generic

conwvol_fit

gen_highpass
gen_lowpass

FIL

Smoothimage_Mean
Smoothimage_Gauss
Smoothimage_Gauss_Mask

Smoothimage_Deriche
Smoothimage_Gauss
Smoothimage_Gauss_Mask

Smoothimage_Median
Smoothimage_Median_Mask

Smoothimage_Mddle
Smoothlmage_Quantile
Smoothimage_Bilateral
Dilatelmage
Erodelmage
Closelmage
Openlmage
Conwlvelmage
Gradientimage
Gradientimage_Mask
Gradientimage_Mask
Gradientimage_Mask
Gradientimage_Mask
DifferenceOfGaussians
Sharpenlmage
NormalizeLocalContrast
Inpaintimage

Inpaintimage_Bornemann
Inpaintimage_Telea

Thresholdimage
ThresholdToRegion
Thresholdimage_Hysteresis
Thresholdimage_Dynamic
SelectThresholdValue
Segmentimage_Watersheds
EqualizelmageHistogram

ImageAlongPath
ImageAlongArc

ImageProfileAlongPath
CutimagelntoTiles
ImageMaximum
ImageLocalMaxima

CreateAffineTransformMatrix
Transformlmage

CreateCoordinateSystemFromVector
CreateCoordinateSystemFromSegment

AlignPoint
TranslatePoint

CreateldentityMatrix
CreateAffine TransformMatrix
CreateAffineTransformMatrix
Transformimage
ImagePolarTransform
ImagelnversePolarTransform
Transformlmage
LUTTransformimage
Lerpimages
ImageStandardDeviation
FourierTransform
FourierTransform

FourierTransform
Conwolvelmage

FrequencyDomain_FilterFrequencies
FrequencyDomain_FilterFrequencies

Module

FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite
FoundationPro
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationBasic
FoundationLite
FoundationBasic
FoundationPro

FoundationPro
FoundationPro

FoundationLite
FoundationBasic
FoundationBasic
FoundationLite
FoundationBasic
FoundationBasic
FoundationLite

FoundationPro
FoundationBasic

FoundationPro
FoundationBasic
FoundationLite
FoundationBasic

FoundationBasic
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationBasic
FoundationBasic
FoundationLite
FoundationBasic
FoundationBasic
FoundationLite
FoundationLite
FoundationLite
FoundationBasic
FoundationPro
FoundationPro

FoundationPro
FoundationLite

FoundationPro
FoundationPro

Comment

In the OpenCV context, regions may be represented as binary image masks, but there are no true RLE-encoded regions. See also Region.

OpenCV

Halcon

gen_circle

gen_ellipse
gen_grid_region
gen_rectangle2
gen_region_line
gen_region_polygon_filled
gen_rectangle1

gen_region_contour_xd

gen_region_line

FIL

CreateCircleRegion
CreateCrossRegion
CreateBoxBorderRegion
CreateEllipseRegion
CreateGridRegion
CreateBoxRegion
CreateLineRegion
CreatePolygonRegion
CreateRectangleRegion

CreatePathRegion
CreatePathBorderRegion

CreateRectangleBorderRegion
CreateRingRegion
CreateSegmentRegion

Module

FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite
FoundationLite

Comment

https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Mean.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Deriche.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Median_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Middle.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Quantile.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Bilateral.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/DilateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ErodeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/CloseImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/OpenImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ConvolveImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage_Mask.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/DifferenceOfGaussians.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/SharpenImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/NormalizeLocalContrast.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/InpaintImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/InpaintImage_Bornemann.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/InpaintImage_Telea.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_Hysteresis.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/SelectThresholdValue.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Watersheds.html
https://docs.fab-image.com/5.3/fil/functions/ImageEnhancement/EqualizeImageHistogram.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImageAlongPath.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImageAlongArc.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageProfileAlongPath.html
https://docs.fab-image.com/5.3/fil/functions/ImageTiling/CutImageIntoTiles.html
https://docs.fab-image.com/5.3/fil/functions/ImagePixelStatistics/ImageMaximum.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CreateAffineTransformMatrix.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransformImage.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DConstructions/CreateCoordinateSystemFromVector.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DConstructions/CreateCoordinateSystemFromSegment.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/AlignPoint.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/TranslatePoint.html
https://docs.fab-image.com/5.3/fil/functions/Matrix/CreateIdentityMatrix.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CreateAffineTransformMatrix.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CreateAffineTransformMatrix.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransformImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImagePolarTransform.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImageInversePolarTransform.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransformImage.html
https://docs.fab-image.com/5.3/fil/functions/ImagePointTransforms/LUTTransformImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/LerpImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageStandardDeviation.html
https://docs.fab-image.com/5.3/fil/functions/FourierAnalysis/FourierTransform.html
https://docs.fab-image.com/5.3/fil/functions/FourierAnalysis/FourierTransform.html
https://docs.fab-image.com/5.3/fil/functions/FourierAnalysis/FourierTransform.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ConvolveImage.html
https://docs.fab-image.com/5.3/fil/functions/FourierAnalysis/FrequencyDomain_FilterFrequencies.html
https://docs.fab-image.com/5.3/fil/functions/FourierAnalysis/FrequencyDomain_FilterFrequencies.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateCircleRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateCrossRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateBoxBorderRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateEllipseRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateGridRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateBoxRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateLineRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreatePolygonRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateRectangleRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreatePathRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreatePathBorderRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateRectangleBorderRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateRingRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateSegmentRegion.html

dilate
dilate
erode
erode

findContours

contourArea

moments

difference
intersection
union2
symm_difference
complement

mirror_region

franspose_region
dilation_rectangle1
dilation_circle
dilation1

dilation2
erosion_rectangle1
erosion_circle
erosion1

erosion2

closing
closing_circle
closing_rectangle1
opening
opening_rectangle1
opening_circle
expand_gray
morph_skeleton
thickening

thinning

pruning

get region_contour
fill_up
expand_region
move_region
affine_trans_region
test_equal_region
test_region_point
test_subset_region

select_shape
select_shape

select_shape

select_shape

clip_region

zoom_region

affine_trans_region
gen_region_points
get_region_points

area_center

area_holes
circularity
convexity

diameter_region

elliptic_axis
orientation_region
region_features
rectangularity

connect_and_holes

get _region_runs

connection

RegionDifference
Regionlintersection
RegionUnion
RegionSymmetricDifference
RegionComplement

MrrorRegion
ReflectRegion

TransposeRegion
DilateRegion
DilateRegion
DilateRegion_AnyKemnel
DilateRegion_AnyKemel
ErodeRegion
ErodeRegion
ErodeRegion_AnyKemel
ErodeRegion_AnyKemel
ErodeRegion_Threshold
CloseRegion_AnyKernel
CloseRegion
CloseRegion
OpenRegion_AnyKernel
OpenRegion
OpenRegion
ExpandRegions

ThresholdSmoothedRegion_Mean

DemarcateRegions
SkeletonizeRegion
ThickenRegion
ThinRegion
PruneRegion
RegionContours
FillRegionHoles
ExpandRegions
TranslateRegion
ShearRegion
TestRegionEqualTo

TestPointinRegion
TestPointArayinRegion

TestRegionlnRegion
TestRegionIntersectsWith
TestRegionOnBorder
VerifyRegion
ClassifyRegions
InscribeRegionIinRegion

GetMaximumRegion
GetMaximumRegion_OrNil

GetMinimumRegion
GetMinimumRegion_OrNil

GroupPathsByRegions
GroupPointsByRegions
GroupRegionsByRegions

TrimRegionToRectangle
CropRegion
CropRegionToRectangle
CropRegionToQuadrangle

TrimRegionToPolygon

ResizeRegion
ResizeRegion_Relative
DownsampleRegion
ShrinkRegionNTimes
EnlargeRegionNTimes

AlignRegion
RotateRegion
UncropRegion

Locations ToRegion
RegionToLocations
RegionCharacteristicPoint

RegionArea
RegionMassCenter

RegionHoles
RegionCircularity
RegionConvexity

RegionDiameter
RegionCaliperDiameter

RegionEllipticAxes
RegionCrientation
RegionMoment
RegionRectangularity
RegionElongation
RegionNumberOfHoles
RegionMedial Axis
RegionPerimeterLength
RegionProjection
RegionHoles_Elastic
SplitRegionintoBlobs

FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationLite

FoundationBasic
FoundationBasic

FoundationLite
FoundationBasic

FoundationBasic
FoundationBasic
FoundationLite
FoundationLite
FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic

FoundationPro
FoundationLite
FoundationPro
FoundationPro

FoundationPro

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationLite
FoundationLite
FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationBasic
FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic

Utility function: area.

https://docs.fab-image.com/5.3/fil/functions/RegionCombinators/RegionDifference.html
https://docs.fab-image.com/5.3/fil/functions/RegionCombinators/RegionIntersection.html
https://docs.fab-image.com/5.3/fil/functions/RegionCombinators/RegionUnion.html
https://docs.fab-image.com/5.3/fil/functions/RegionCombinators/RegionSymmetricDifference.html
https://docs.fab-image.com/5.3/fil/functions/RegionPointTransforms/RegionComplement.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/MirrorRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ReflectRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/TransposeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion_Threshold.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/CloseRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/OpenRegion_AnyKernel.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/OpenRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/OpenRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ExpandRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ThresholdSmoothedRegion_Mean.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DemarcateRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/SkeletonizeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ThickenRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ThinRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/PruneRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionContours.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/FillRegionHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ExpandRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/TranslateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ShearRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/TestRegionEqualTo.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/TestPointInRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/TestPointArrayInRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/TestRegionInRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/TestRegionIntersectsWith.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/TestRegionOnBorder.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/VerifyRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/ClassifyRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/InscribeRegionInRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GetMaximumRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GetMaximumRegion_OrNil.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GetMinimumRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GetMinimumRegion_OrNil.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GroupPathsByRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GroupPointsByRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/GroupRegionsByRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/TrimRegionToRectangle.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/CropRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/CropRegionToRectangle.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/CropRegionToQuadrangle.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/TrimRegionToPolygon.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ResizeRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ResizeRegion_Relative.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/DownsampleRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ShrinkRegionNTimes.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/EnlargeRegionNTimes.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/AlignRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/RotateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/UncropRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/LocationsToRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/RegionToLocations.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/RegionCharacteristicPoint.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionArea.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionMassCenter.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionCircularity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionConvexity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionDiameter.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionCaliperDiameter.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionEllipticAxes.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionOrientation.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionMoment.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionRectangularity.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionElongation.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionNumberOfHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionMedialAxis.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionPerimeterLength.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionProjection.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionHoles_Elastic.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html

Geometry 2D

Geometrical algorithms are essential in processing results in most computer vision applications. For the full list see Geometry 2D — FIL provides a
comprehensive geometry library with many more functions than presented below. FIL also provides simple utility functions described in comments.

hit_or_miss
convexity
smallest_rectangle1

smallest_circle

boundary

inner_circle

select_shape
sort_region
read_region
write_region

SplitRegionintoComponents
SplitRegionIntoExactyNComponents

RegionHitAndMiss Transform
DemarcateRegions
RegionConvexHull
RegionBoundingRectangle
RegionBoundingBox
RegionBoundingCircle
RegionBoundingParallelogram

RegionBoundaries
RegionOuterBoundaries

RegioninscribedCircle
RegioninscribedBox
Regioninteriors
RemoveBordersFromRegion
RemoveRegionBlobs

ExtractBlobs_Color
ExtractBlobs_Dynamic
ExtractBlobs_ Intensity

SelectRegions
SortRegions
LoadRegion
SaveRegion

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationLite

FoundationBasic
FoundationPro

FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationBasic

FoundationBasic
FoundationBasic
FoundationLite
FoundationLite

https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoComponents.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoExactlyNComponents.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/RegionHitAndMissTransform.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DemarcateRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RegionConvexHull.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingRectangle.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingBox.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingCircle.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionBoundingParallelogram.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RegionBoundaries.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RegionOuterBoundaries.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionInscribedCircle.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionInscribedBox.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RegionInteriors.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RemoveBordersFromRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/RemoveRegionBlobs.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/ExtractBlobs_Color.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/ExtractBlobs_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/ExtractBlobs_Intensity.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/SelectRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/SortRegions.html
https://docs.fab-image.com/5.3/fil/functions/RegionIO/LoadRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionIO/SaveRegion.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2D/index.html

OpenCV

convexHull
contourArea

Path

Here is a list of fundamental paths transformations available in aimost any library. For the full list see Path.

Halcon

angle_|I
distance_cc_min

distance_cc
distance_lc
distance_Ir

distance_pc

distance_pl

distance_contours_xd
distance_pp

distance_pr

distance_ps

distance_ss
distance_rr_min
intersection_circles
intersection_line_circle
intersection_contours_xd

intersection_line_contour_xd

intersection_lines
intersection_segment_line

intersection_lI

intersection_segments
projection_pl

line_orientation

line_position
shape_trans
area_center_xd

draw_nurbs

smallest_rectangle2
area_center_xd
length_xd
circularity_xd
orientation_xd
union_collinear_contours_xd
area_center_xd
circularity_xd
elliptic_axis_xd
smallest_circle_xd
moments_xd
moments_xd

test_Xd_point

FIL
AngleBetweenLines
AngleBetweenSegments
PathToPathDistance

PathToPathDistance
PathToPathMaxmumDistance

PathToLineDistance
PathToLineDistanceProfile

RegionContours
PathToPathDistance

PathToPointDistance
PathToPointDistanceProfile

PointToLineDistance
PointToLineDistance_Oriented

PathToPathDistanceProfile
PointToPointDistance

PathToPointDistanceProfile
RegionContours

PointToSegmentDistance
SegmentToSegmentDistance
RegionToRegionDistance
CircleCirclelntersection
LineCirclelntersection
PathPathintersections

PathLinelntersections
PathSegmentintersections

LineLinelntersection
LineSegmentlintersection

LineLinelntersection
SegmentSegmentintersection

SegmentSegmentintersection
ProjectPointOnLine

LineOrientation
SegmentOrientation

SegmentCrientation
Points ConvexHull
PolygonArea

CreateBicircularCurve
DrawPath

PathBoundingBox
PathMassCenter
PathLength
PolygonCircularity
PolygonCQrientation
JoinAdjacentPaths
PolygonMassCenter
PolygonRectangularity
PolygonConvexity
PolygonEllipticAxes
PolygonElongation
PolygonlinscribedCircle
PolygonMoment
PolygonMoment

TestPointArayinPolygon
TestPointinPolygon

TestPolygonConvex
TestPolygoninPolygon

PolygonWithNormalizedCOrientation

FindClosestPoints

Module

FoundationLite
FoundationLite
FoundationPro

FoundationPro
FoundationPro

FoundationBasic
FoundationBasic

FoundationBasic
FoundationPro

FoundationBasic
FoundationBasic

FoundationLite
FoundationLite

FoundationPro
FoundationLite

FoundationBasic
FoundationBasic

FoundationLite
FoundationLite
FoundationBasic
FoundationLite
FoundationLite
FoundationPro

FoundationPro
FoundationPro

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite

FoundationLite
FoundationLite
FoundationBasic

FoundationBasic
FoundationLite

FoundationLite

FoundationLite

FoundationLite

FoundationBasic
FoundationBasic
FoundationPro

FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic

FoundationBasic
FoundationLite

FoundationBasic
FoundationBasic
FoundationBasic
FoundationLite

Comment

Utility functions: angleTurn, angleDiff.

Utility function: distance.
Utility function: distance.

Utility function: distance.

Utility function: distance.

Utility function: intersection.
Utility function: intersection.

Utility function: intersection.

Utility function: intersection.
Utility function: project.

Utility property: Line2D.Orientation.
Utility property: Line2D.Orientation.

https://docs.fab-image.com/5.3/fil/functions/Geometry2DAngleMetrics/AngleBetweenLines.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DAngleMetrics/AngleBetweenSegments.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPathDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPathDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPathMaximumDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToLineDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToLineDistanceProfile.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionContours.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPathDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPointDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPointDistanceProfile.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DDistanceMetrics/PointToLineDistance.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DDistanceMetrics/PointToLineDistance_Oriented.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPathDistanceProfile.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DDistanceMetrics/PointToPointDistance.html
https://docs.fab-image.com/5.3/fil/functions/PathMetrics/PathToPointDistanceProfile.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionContours.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DDistanceMetrics/PointToSegmentDistance.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DDistanceMetrics/SegmentToSegmentDistance.html
https://docs.fab-image.com/5.3/fil/functions/RegionMetrics/RegionToRegionDistance.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/CircleCircleIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/LineCircleIntersection.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/PathPathIntersections.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/PathLineIntersections.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/PathSegmentIntersections.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/LineLineIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/LineSegmentIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/LineLineIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/SegmentSegmentIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/SegmentSegmentIntersection.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DConstructions/ProjectPointOnLine.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFeatures/LineOrientation.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFeatures/SegmentOrientation.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFeatures/SegmentOrientation.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFeatures/PointsConvexHull.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonArea.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/CreateBicircularCurve.html
https://docs.fab-image.com/5.3/fil/functions/ImageDrawing/DrawPath.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathBoundingBox.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathMassCenter.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathLength.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonCircularity.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonOrientation.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/JoinAdjacentPaths.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonMassCenter.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonRectangularity.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonConvexity.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonEllipticAxes.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonElongation.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonInscribedCircle.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonMoment.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonMoment.html
https://docs.fab-image.com/5.3/fil/functions/PolygonRelations/TestPointArrayInPolygon.html
https://docs.fab-image.com/5.3/fil/functions/PolygonRelations/TestPointInPolygon.html
https://docs.fab-image.com/5.3/fil/functions/PolygonRelations/TestPolygonConvex.html
https://docs.fab-image.com/5.3/fil/functions/PolygonRelations/TestPolygonInPolygon.html
https://docs.fab-image.com/5.3/fil/functions/PolygonFeatures/PolygonWithNormalizedOrientation.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DRelations/FindClosestPoints.html
https://docs.fab-image.com/5.3/fil/functions/Path/index.html

OpenCV

convexHull

Computer Vision

This section contains higher-level vision tools.

Halcon

close_contours_xd

affine_trans_contour_xd

affine_trans_contour_xd

affine_trans_contour_xd
affine_trans_contour_xd
affine_trans_contour_xd
affine_trans_contour_xd
affine_trans_contour_xd

affine_trans_contour_xd

get lines_xd
get_contour_xd
get contour_angle_xd

smallest rectangle1_xd

smallest circle_Xd

get contour_attrib_xd
diameter_xd
get_lines_xd

test_self_intersection_xd
test_self_intersection_xd
max_parallels_xd

smooth_contours_xd

sort_contours_xd

select_contours_xd

select_shape_xd

FIL

ClosePath

AlignPath
AlignPathArray

FitPathToPath
InflatePath

PathAlongArc
PathAlongPath

RotatePath
RotatePathArray

ReversePath

RescalePath
RescalePathArray

ShiftPath

TranslatePath
TranslatePathArray

TransposePath
PathProjectionProfile
ConvertToEquidistantPath
ExtendPath
FindLongestSubpath
FindLongestSubpath
ReducePath
RemovePathSelfintersections
SegmentPath
PathArrayPoints
PathAverageTurnAngle

PathBoundingBox
PathBoundingRectangle

PathBoundingCircle
PathBoundingParallelogram
PathCaliperDiameter
PathDiameter
PathSegments
PathConvexHull
PathEndpoints
PathSelfintersections
PathSelfintersections
ConcatenatePaths

SplitPathByLine
SplitPathByPath
SplitPathBySegment

SmoothPath_Gauss
SmoothPath_Mean

SortPaths

SelectClosedPaths
SelectOpenPaths
SelectinnerPaths
SelectOuterPaths

ClassifyPaths
GetMaximumPath
GetMinimumPath

Module

FoundationLite

FoundationLite
FoundationLite

FoundationPro
FoundationPro

FoundationBasic
FoundationPro

FoundationLite
FoundationLite

FoundationLite

FoundationLite
FoundationLite

FoundationBasic

FoundationLite
FoundationLite

FoundationLite
FoundationPro
FoundationBasic
FoundationBasic
FoundationPro
FoundationPro
FoundationBasic
FoundationPro
FoundationPro
FoundationLite
FoundationPro

FoundationLite
FoundationBasic

FoundationBasic
FoundationPro
FoundationBasic
FoundationLite
FoundationLite
FoundationBasic
FoundationLite
FoundationPro
FoundationPro
FoundationLite

FoundationBasic
FoundationPro
FoundationBasic

FoundationPro
FoundationPro

FoundationBasic

FoundationBasic
FoundationBasic
FoundationPro
FoundationPro

FoundationBasic

FoundationBasic
FoundationBasic

Comment

https://docs.fab-image.com/5.3/fil/functions/PathBasics/ClosePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/AlignPath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/AlignPathArray.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/FitPathToPath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/InflatePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/PathAlongArc.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/PathAlongPath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/RotatePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/RotatePathArray.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/ReversePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/RescalePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/RescalePathArray.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/ShiftPath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/TranslatePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/TranslatePathArray.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/TransposePath.html
https://docs.fab-image.com/5.3/fil/functions/PathSpatialTransforms/PathProjectionProfile.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/ConvertToEquidistantPath.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/ExtendPath.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/FindLongestSubpath.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/FindLongestSubpath.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/ReducePath.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/RemovePathSelfIntersections.html
https://docs.fab-image.com/5.3/fil/functions/PathGlobalTransforms/SegmentPath.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathArrayPoints.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathAverageTurnAngle.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathBoundingBox.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathBoundingRectangle.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathBoundingCircle.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathBoundingParallelogram.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathCaliperDiameter.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathDiameter.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathSegments.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathConvexHull.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathEndpoints.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathSelfIntersections.html
https://docs.fab-image.com/5.3/fil/functions/PathFeatures/PathSelfIntersections.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/ConcatenatePaths.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/SplitPathByLine.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/SplitPathByPath.html
https://docs.fab-image.com/5.3/fil/functions/PathCombinators/SplitPathBySegment.html
https://docs.fab-image.com/5.3/fil/functions/PathLocalTransforms/SmoothPath_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/PathLocalTransforms/SmoothPath_Mean.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/SortPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/SelectClosedPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/SelectOpenPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/SelectInnerPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/SelectOuterPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/ClassifyPaths.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/GetMaximumPath.html
https://docs.fab-image.com/5.3/fil/functions/PathClassification/GetMinimumPath.html

OpenCV Halcon FIL Module Comment
ScanSingleEdge MetrologyBasic
- measure_pos ScanMultipleEdges MetrologyBasic See also ScanSingleRidge
ScanExactlyNEdges MetrologyBasic
ScanSingleStripe MetrologyBasic
- measure_pairs ScanMultipleStripes MetrologyBasic
ScanExactlyNStripes MetrologyBasic
ScanSingleEdge MetrologyBasic
- measure_thresh ScanMultipleEdges MetrologyBasic See also ScanSingleRidge
ScanBExactlyNEdges MetrologyBasic
: DetectEdges FoundationLite
- g Sl 7k DetectEdges_AsPaths FoundationBasic
_ f DetectEdges FoundationLite
edges_color_sub_pix DetectEdges_AsPaths FoundationBasic
ReadSingleDataMatrixCode Datacodes
- find_data_code_2d ReadSingleQRCode Daineoits See also Datacodes
- find_bar_code ReadSingleBarcode Barcodes See also: Barcodes
- detect_edge_segments FitSegmentToEdges MetrologyPro
- fit_line_contour_xd FitSegmentToPoints FoundationBasic
- fit_circle_contour_xd FitCircleToPoints FoundationBasic
- - FitPathToRidges MetrologyPro
- - FitPathToStripe MetrologyPro
- - FitPathToEdges MetrologyPro
- fit_circle_contour_xd FitCircleToRidges MetrologyPro
= fit_circle_contour_xd FitCircleToEdges MetrologyPro
- - FitCircleToStripe MetrologyPro
FitLineToPoints_LTE FoundationBasic
_ _ FitLineToPoints_M FoundationBasic
FitLineToPoints_ RANSAC FoundationBasic
FitLineToPoints_TheilSen FoundationBasic
FitSegmentToPoints FoundationBasic
_ _ FitSegmentToPoints_LTE FoundationBasic
FitSegmentToPoints_ RANSAC FoundationBasic
FitSegmentToPoints_TheilSen FoundationBasic
LocateSingleObject NCC MatchingBasic
matchTemplate find_ncc_model LocateMultipleObjects NCC MatchingBasic
- gen_measure_rectangle2 CreateScanMap MetrologyBasic
_ LocateSingleObject Edges1 MatchingPro
findishapeImodel LocateMultipleObjects_Edges1 MatchingPro
- create_shape_model CreateEdgeModel1 MatchingPro
- write_shape_model SaveEdgeModel MatchingPro
- read_shape_model LoadEdgeModel MatchingPro
- segment_image_mser FindVaxStableExtremalRegions FoundationPro
- auto_threshold Segmentlmage_Color FoundationPro
- detect_edge_segments Segmentlmage_Edges FoundationPro
- local_threshold Segmentlmage_Gray FoundationPro Methods are very different.
_ _ Segmentlmage_Gray Linear FoundationPro
Segmentlmage_Gray_Tiled FoundationPro
- corner_response DetectCorners_CornerResponse FoundationBasic
- - DetectCorners_Foerstner FoundationBasic
preComerDetect points_foerstner DetectCorners_Foerstner FoundationBasic
PhotometricStereo_Perform Photometric
- photometric_stereo PhotometricStereo_ComputeHeightMap Photometric
PhotometricStereo_SurfaceCurvature Photometric
HoughLines2 hough_lines Detectlines FoundationBasic
_ _ DetectlLinePeak FoundationPro
DetectlLinePeak_Gauss FoundationPro
] ; DetectSingleCircle FoundationBasic
AR S IMELER EEES DetectMultipleCircles FoundationBasic
- - DetectPaths FoundationBasic
- texture_laws LawsFilter FoundationBasic
- - LinearBinaryPattern FoundationBasic
- - LocateSinglePointPattern FoundationPro
- texture_laws LawsFilter FoundationBasic
= trainf_ocr_class_svm TrainOcr_SWM OCR
- trainf_ocr_class_mlp TrainOcr_MLP OCR
- do_ocr_multi ReadText OCR
Camera Calibration

The three products have quite different approach to calibration functions. OpenCV provides basic distortion correction based on (x, y) transformation
maps. Commercial libraries provide highly optimized remapping based on precomputed data, but also focus on coordinate space transformations
and image stitching functionalities. For details see Camera Calibration and World Coordinates.

OpenCV Halcon FIL Module Comment

calibrateCamera camera_calibration Cell TR [AIAEE] Cal!brah:on Al function could use different methods.
CalibrateCamera_Telecentric Calibration

= find_caltab DetectCalibrationGrid_Circles Calibration

- find_marks_and_pose GenerateCalibrationPoints Calibration

- set_origin_pose ShiftWorldPlane Calibration

- gen_image_to_world_plane_map CreateRectificationVap Advanced Calibration

remap map_image Rectifyimage Calibration OpenCV needs operation to extract final transformation

matrix
Machine Learning

Fundamental machine learning algorithms include K Nearest Neighbors, Support Vector Machines, Multi-Layer Perceptron and Principal Component
Analysis. In the below table we provide just basic algorithms as a starting point for finding what you need.

https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleRidge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleStripe.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleStripes.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNStripes.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleRidge.html
https://docs.fab-image.com/5.3/fil/functions/2DEdgeDetection/DetectEdges.html
https://docs.fab-image.com/5.3/fil/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.fab-image.com/5.3/fil/functions/2DEdgeDetection/DetectEdges.html
https://docs.fab-image.com/5.3/fil/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.fab-image.com/5.3/fil/functions/Datacodes/ReadSingleDataMatrixCode.html
https://docs.fab-image.com/5.3/fil/functions/Datacodes/ReadSingleQRCode.html
https://docs.fab-image.com/5.3/fil/functions/Datacodes/index.html
https://docs.fab-image.com/5.3/fil/functions/Barcodes/ReadSingleBarcode.html
https://docs.fab-image.com/5.3/fil/functions/Barcodes/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitSegmentToEdges.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitSegmentToPoints.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitCircleToPoints.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitPathToRidges.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitPathToStripe.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitPathToEdges.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToRidges.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToStripe.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitLineToPoints_LTE.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitLineToPoints_M.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitLineToPoints_RANSAC.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitLineToPoints_TheilSen.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitSegmentToPoints.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitSegmentToPoints_LTE.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitSegmentToPoints_RANSAC.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitSegmentToPoints_TheilSen.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateSingleObject_NCC.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_NCC.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/CreateScanMap.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateSingleObject_Edges1.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_Edges1.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/SaveEdgeModel.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LoadEdgeModel.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/FindMaxStableExtremalRegions.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Color.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Edges.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Gray.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Gray_Linear.html
https://docs.fab-image.com/5.3/fil/functions/ImageSegmentation/SegmentImage_Gray_Tiled.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/DetectCorners_CornerResponse.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/DetectCorners_Foerstner.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/DetectCorners_Foerstner.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/PhotometricStereo_Perform.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/PhotometricStereo_ComputeHeightMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/PhotometricStereo_SurfaceCurvature.html
https://docs.fab-image.com/5.3/fil/functions/HoughTransform/DetectLines.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/DetectLinePeak.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/DetectLinePeak_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/HoughTransform/DetectSingleCircle.html
https://docs.fab-image.com/5.3/fil/functions/HoughTransform/DetectMultipleCircles.html
https://docs.fab-image.com/5.3/fil/functions/HoughTransform/DetectPaths.html
https://docs.fab-image.com/5.3/fil/functions/TextureAnalysis/LawsFilter.html
https://docs.fab-image.com/5.3/fil/functions/TextureAnalysis/LinearBinaryPattern.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/LocateSinglePointPattern.html
https://docs.fab-image.com/5.3/fil/functions/TextureAnalysis/LawsFilter.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/ReadText.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/CameraCalibrationAndWorldCoordinates.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/GenerateCalibrationPoints.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/ShiftWorldPlane.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CreateRectificationMap_Advanced.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html

OpenCV
CwKNearest:find_nearest
CvSWt:predict
CvANN_MLP::predict

Communication

Halcon

classify_image_class_knn
classify_image_class_svm
classify_image_class_mlp

gen_principal_comp_trans

FIL

KNN_Classify

SW ClassifySingle
SW ClassifyMultiple

MLP_Respond

ApplyPCATransform
ReversePCATransform

LinearRegression
LinearRegression_LTE
LinearRegression_M
LinearRegression_RANSAC
LinearRegression_TheilSen

QuadraticRegression
QuadraticRegression_M

QuadraticRegression_ RANSAC

ClusterData_KMeans

ClusterPoints2D
ClusterPoints2D_SingleLink

Module

FoundationPro

FoundationPro
FoundationPro

FoundationPro

FoundationPro
FoundationPro

FoundationBasic

FoundationPro
FoundationPro
FoundationPro

FoundationBasic
FoundationBasic

FoundationPro
FoundationPro

FoundationPro

FoundationPro
FoundationPro

The below table contains only basic functions. Please refer to detailed documentation for more details.

OpenCV

Halcon

open_serial
read_serial
write_serial
open_socket_accept
open_socket_connect
close_socket
receive_data
send_data

Deep Learning Training API

Table of contents:

1. Overview

2. Types

3. Functions
o CreateSamples
o Train
o SolveTrainingSamples
o GetWorstValidationValue
o IsValidationBetter
o FindBestValidation

4. Handling events

1. Overview

FIL

SerialPort_Config
SerialPort_ReadBuffer
SerialPort_WriteBuffer
Teplp_Accept
Teplp_Connect
Teplp_Close
Teplp_ReadBuffer
Teplp_WriteBuffer
Ftp_ReceiveFile
Ftp_Receivelmage
Ftp_SendFile
Ftp_Sendimage
Http_SendRequest GET
Http_SendRequest POST
Http_DecodeURL
Http_EncodeURL

Module

FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationLite
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic
FoundationBasic

Comment

Comment

Whole API declaration is located in Api . h file (in FILDL_PATH5 3\include)under f£il: :DeepLearning namespace. This namespace
contains the following namespaces:

e AnomalyDetectionl Local, grouping together classes and functions related to training in Anomaly Detection 1 — Local mode,

L]

L]

L]

L]

AnomalyDetectionl Global, analogous to the above,

AnomalyDetection2, analogous to the above,

FeatureDetection, analogous to the above,

ObjectClassification, analogous to the above,

InstanceSegmentation, analogous to the above,

PointLocation, analogous to the above,

and Common, grouping together classes and functions used in multiple namespaces mentioned before.

Each namespace (except Common) contains almost the same set of types and functions — in respect of their functionality and purpose. Naturally,

types and functions in one namespace differ from their counterparts from another namespaces in respect of their signatures and declaration in code.

Example usages of Deep Learning Training APl are shown in the following projects:

o %Public%/Documents/Fablmage Deep Learning 5.3/02 Training - Feature Detection - Feature Detection mode.

o %Public%/Documents/Fablmage Deep Learning 5.3/03 Training - Object Classification - Object Classification mode.

o %Public%/Documents/Fablmage Deep Learning 5.3/04 Training - Instance Segmentation - Instance Segmentation mode.

https://docs.fab-image.com/5.3/fil/functions/NearestNeighbors/KNN_Classify.html
https://docs.fab-image.com/5.3/fil/functions/SupportVectorMachines/SVM_ClassifySingle.html
https://docs.fab-image.com/5.3/fil/functions/SupportVectorMachines/SVM_ClassifyMultiple.html
https://docs.fab-image.com/5.3/fil/functions/MultilayerPerceptron/MLP_Respond.html
https://docs.fab-image.com/5.3/fil/functions/PrincipalComponentAnalysis/ApplyPCATransform.html
https://docs.fab-image.com/5.3/fil/functions/PrincipalComponentAnalysis/ReversePCATransform.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/LinearRegression.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/LinearRegression_LTE.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/LinearRegression_M.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/LinearRegression_RANSAC.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/LinearRegression_TheilSen.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/QuadraticRegression.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/QuadraticRegression_M.html
https://docs.fab-image.com/5.3/fil/functions/RegressionAnalysis/QuadraticRegression_RANSAC.html
https://docs.fab-image.com/5.3/fil/functions/Clustering/ClusterData_KMeans.html
https://docs.fab-image.com/5.3/fil/functions/Clustering/ClusterPoints2D.html
https://docs.fab-image.com/5.3/fil/functions/Clustering/ClusterPoints2D_SingleLink.html
https://docs.fab-image.com/5.3/fil/functions/SerialPort/SerialPort_Config.html
https://docs.fab-image.com/5.3/fil/functions/SerialPort/SerialPort_ReadBuffer.html
https://docs.fab-image.com/5.3/fil/functions/SerialPort/SerialPort_WriteBuffer.html
https://docs.fab-image.com/5.3/fil/functions/TCPIP/TcpIp_Accept.html
https://docs.fab-image.com/5.3/fil/functions/TCPIP/TcpIp_Connect.html
https://docs.fab-image.com/5.3/fil/functions/TCPIP/TcpIp_Close.html
https://docs.fab-image.com/5.3/fil/functions/TCPIP/TcpIp_ReadBuffer.html
https://docs.fab-image.com/5.3/fil/functions/TCPIP/TcpIp_WriteBuffer.html
https://docs.fab-image.com/5.3/fil/functions/FTP/Ftp_ReceiveFile.html
https://docs.fab-image.com/5.3/fil/functions/FTP/Ftp_ReceiveImage.html
https://docs.fab-image.com/5.3/fil/functions/FTP/Ftp_SendFile.html
https://docs.fab-image.com/5.3/fil/functions/FTP/Ftp_SendImage.html
https://docs.fab-image.com/5.3/fil/functions/HTTP/Http_SendRequest_GET.html
https://docs.fab-image.com/5.3/fil/functions/HTTP/Http_SendRequest_POST.html
https://docs.fab-image.com/5.3/fil/functions/HTTP/Http_DecodeURL.html
https://docs.fab-image.com/5.3/fil/functions/HTTP/Http_EncodeURL.html

o %Public%/Documents/Fablmage Deep Learning 5.3/05 Training - Detect Anomalies 1 Local - Detect Anomalies 1 Local mode.
o %Public%/Documents/Fablmage Deep Learning 5.3/06 Training - Detect Anomalies 2 - Detect Anomalies 2 mode.

o %Public%/Documents/Fablmage Deep Learning 5.3/07 Training - Locate Points - Locate Points mode.

2. Types

Namespaces except Common, declare classes:

e PreprocessingConfig, containing setters and getters for preprocessing settings (e.g. downsample).
e AugmentationsConfig, containing setters and getters for augmentations settings (e.g. flips, rotation).

e TrainingConfig, containing setters and getters for general training settings (e.g. iteration count). As well as pointers to objects of types
mentioned above.

e Sample, containing setters and getters for one training sample (e.g. path to image file).

e TrainingEventsHandler, containing virtual methods used as handlers for various events happening during training process and solving
training samples. This class is intended for inheriting. Handling events is described in detail in section

In addition, each class (except TrainingEventsHandler) has 2 more methods:

e Create (.. .)- static method intended for constructing objects of specific type. It allows setting all fields at the same time, without calling
multiple setters after construction.

e Clone ()- method for creating new objects being the exact copy of cloned one.

Due to differences between supported network types and, consequently, different sets of possible parameters, mentioned classes may differ from
theirs counterparts from other namespaces. Classes except TrainingEventsHandlerare not intended for being inherited by user types.

Commonnamespace contains 2 classes important for user:

e ModelInfo- containing information about already existing in training directory model file. Currently, only validation history is provided. It is used
in ReceivedExistingModelInfo (...)event handler.

e Progress- containing data about progress in training process or solving training samples. Progress information is divided into 3 fields:
o Stage- very general information describing process advancement.

o Phase- more fine-grained information of advancement in current Stage. It contains 2 integers: total number of phases and current
phase. Phases does not have take the same time to finish.

o and optional Step- some Phasescan be divided into smaller steps. In such cases, this field contains 2 integers: total number of steps
in current Phaseand number of already finished steps. Each step should take roughly the same time to finish.
These fields are useful for creating progress bars and so on.
Apart from that, Progressobjects contain information about current training, validation values (if applicable) and boolean value indicating that
validation has started.

3. Functions
Namespaces except Common, declare functions:
CreateSamples

Helper function intended for creating array of training samples from images in given directory with given parameters. Set of these additional
parameters depends on mode. See documentation in source code for further explanation.

Syntax

ftl::Array<>> CreateSamples
(

coop
const ftl::String& mask
)

Parameters
Name Type Default Description
=» Sample parameters, e.g. path to directory with roi images and so on.
- mask onstsigs L B e T
Train

Performs training process. Returns "true" if model was saved.
Syntax

bool Train

(

DeepLearningConnectionState& state,
const ftl::Array<>> trainingSamples,
const TrainingConfigé& config,
TrainingEventsHandler& eventsHandler

)

https://docs.fab-image.com/5.3/fil/datatypes/String.html
https://docs.fab-image.com/5.3/fil/functions/FileSystem/FindFiles.html

Parameters

Name Type Description
=» state DeepLearningConnectionState& Object maintaining connection with senice
- const L
» trainingSamples Array<std:unique_ptr<Sample>>& Array of training samples
» config const TrainingConfig& Training configuration
. Training events handler. It can be object of TrainingEventsHandleror, more common,
» eventsHandler TrainingEventsHandler& object of user type inherited from it
Remarks

e This function has overload without eventsHandlerparameter. It uses object of TrainingEventsHandlertype instead.

¢ In Anomaly Detection modes all training samples are automatically solved after training. In other modes, this can be done by
SolveTrainingSamples. After solving each sample, SolvedTrainingSampleevent is called.

SolveTrainingSamples
Solves given training samples.
Syntax

void SolveTrainingSamples

(

DeeplLearningConnectionState& state,
const ftl::Array<>>& trainingSamples,
const TrainingConfig& config,

By

TrainingEventsHandler& eventsHandler

Parameters
Name Type Description
» state DeepLearningConnectionState& Object maintaining connection with senice
- const A

» trainingSamples Aray<sid:unique_ptr<Sample>>& Array of training samples

» config const TrainingConfig& Training configuration

» Additional parameters depending on mode

. Training events handler. It can be object of TrainingEventsHandleror, more common,

» eventsHandler TrainingEventsHandler& object of user type inherited from it

Remarks

o After solving each sample, SolvedTrainingSampleevent is called.
o This function does not exists in Anomaly Detection modes since solving training samples is done automatically in Train

o Unlike Train, there is no overload without TrainingEventsHandlerobject - it would be pointless as this function calls
SolvedTrainingSampleevent handler and, by default, this handler does nothing.

o Additional parameters, if present, should be described in documentation for corresponding filter (e.g. FisFilter DL_Segmentinstances) in case
of Instance Segmentation mode).

GetWorstValidationValue
Returns worst possible validation value.
Syntax

float GetWorstValidationValue ()

Remarks

o |tis useful for initialization validation value (e.g. in custom training events handler) and eliminates need of using special values in comparisons.

o This function does not exists in in Anomaly Detection 2 mode as it would be pointless. This is due significant differences in training process in
Anomaly Detection 2 mode comparing to other modes.

IsValidationBetter

Returns "true" if newvalidationvalueis "better" than o1dvalidationvalue. Comparing validation values with relational operators is strongly
discouraged due the fact that in some modes lower values are better, but in other modes — otherwise.

Syntax

bool IsValidationBetter

(

float oldvalidationvalue,
float newValidationValue
)

Parameters
Name Type Description
=» oldValidationValue float Base validation value
» newValidationValue float Compared validation value
Remarks

o This function does not exists in in Anomaly Detection 2 mode as it would be pointless. This is due significant differences in training process in
Anomaly Detection 2 mode comparing to other modes.

FindBestValidation

Returns best validation value from array.

https://docs.fab-image.com/5.3/fil/datatypes/Array.html
https://docs.fab-image.com/5.3/fil/datatypes/Array.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/datatypes/Real.html
https://docs.fab-image.com/5.3/fil/datatypes/Real.html

Syntax

float FindBestValidation

(

const ftl::Array& validationvValues

)

Parameters
Name Type Description
» validationValues const <float>& Array of validation values
Remarks

Useful for obtaining best validation value in already existing model in ReceivedExistingModelInfoevent.

This function does not exists in in Anomaly Detection 2 mode as it would be pointless. This is due significant differences in training process in
Anomaly Detection 2 mode comparing to other modes.

4. Handling events

To communicate with user during training and solving training samples, several events are used. All event handlers are implemented as virtual
methods of TrainingEventsHandler allowing users to write custom handlers by overriding them.
There are 5 possible events:

ReceivedExistingModelInfo (.. .)- this handler is called after receiving information about already existing model right after training
start. If no model is present at given location, handler is not called. This method takes existing model information as parameter (of type
Common: :ModelInfo) and by default does nothing.

ReceivedProgress (.. .)- this handler is called after receiving progress information during training and solving training samples. This
method takes progress information as parameter of type Common: : Progressand have to return t rueif process should be stopped or
falseotherwise. Default handler of this event does nothing and do not interrupt process.

SavedModelAutomatically (.. .)- after training, model file can be saved or discarded. In some cases, Deep Learning Service can make
this decision automatically. This handler is called in such cases. This method contains argument indicating whether file was saved or not.
Default handler does nothing.

SaveModel () - in most cases, Deep Learning Service cannot determine whether model file should be saved or not. This handler is called in
such cases. This method has no arguments but have to return t rueif file should be replaced or falseotherwise. This decision can be made
on the basis of data collected in ReceivedExistingModelInfo (...)and ReceivedProgress (.. .)event handlers. Default handler
always returns truewhich results in Deep Learning Service saving model file.

SolvedTrainingSample (.. .)- this handler is called each time after solving training sample. This happens in Train (.. .) (in both
AnomalyDetection modes) or SolveTrainingSamples (. . .) (in other modes) functions. This method takes training sample (of type
Sample) and solution results as arguments. Unlike previous methods, signature of this methods differs between various namespaces. Default
handler does nothing.

https://docs.fab-image.com/5.3/fil/datatypes/Array.html
https://docs.fab-image.com/5.3/fil/datatypes/Real.html

4. Working with GigE Vision®
Devices

Table of content:

e Enabling Traffic in Firewall

e Enabling Jumbo Packets

o GigE Vision® Device Manager
e Connecting Devices

e Device Settings Editor

e Known Issues

Enabling Traffic in Firewall

Standard windows firewall or other active firewall applications should prompt for confirmation on enabling incoming traffic upon first access to the
device. Sample prompt message from standard Windows 7 Firewall is shown on the image bellow.

@ Windows Security Alert X

Windows Defender Firewall has blocked some features of this

g}

Windows Defender Firewall has blocked some features of FabImage Studio 5.3 Professional on
all public, private and domain networks.

Mame: FabImage Studio 5.3 Professional
. Publisher: Zebra Technologies Corporation
Path: C:\program files\fabimage \fabimage studio 5.3 professional

‘\fabimagestudio.exe
Allow FabImage Studio 5.3 Professional to communicate on these netwarks:
[[] Domain networks, such as a workplace network

[Private networks, such a= my home or work network

[Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing an app through a firewall?

Gﬁllow access Cancel

Please note that a device connected directly to computer's network adapter in Windows Vista and Windows 7 will become an element of an
unidentified network. Such device will be treated by default as Public network. In order to communicate with such a device you must allow for traffic
also in Public networks as shown on the above image.

Clicking on Allow access will enable application to stream video from a device. Because of a delay caused by the firewall dialog first run of a program
may fail with a timeout error. In such situations just try running program again after enabling access.

For information about changing settings of your firewall application search how to allow a program to communicate through this firewall in a Windows
help or a third party application manual. GigE Vision® driver requires that incoming traffic is enabled on all UDP ports for application.

Enabling Jumbo Packets

Introduction

Jumbo Packet is an extension of network devices that allows for transmission of packets bigger than 1.5kB. Enabling Jumbo Packets can
significantly increase video streaming performance.

Note that not all network devices support Jumbo Packets. To activate a big packet size, all devices from a network adapter through network routing
equipment to a camera device must support and have enabled big packet sizes. Most suitable situation for using Jumbo Packets is when the device
is connected directly to computer's network adapter with a crossed Ethernet cable.

Do not enable Jumbo Packets when the device is connected through complicated network infrastructure with more that one routing path as
maximum allowed packet sizes detected at application start can change later in the process.

Enabling Jumbo Packets in Windows Vista/7

1. Open network connections applet from the control panel.

Control Panel (17)

| £ View network connections h

3‘1, Manage network passwords
= Add a wireless device to the network
* Connect to 8 network
* Set up a connecticn or network

{\' Identify and repair network problems

- See more results

|| |networkc0nnecti0ns| H | Sleep |_>| |

2. Right click a network adapter that have a connection with a device and open its properties (an administrator password may be needed).

I.'r| » Control Panel » Network andInternet » Network Connections » - i '

Organize » Disable this network device Diagnose this connection » 2=~ 0 @

| Local Area Connection
Umd-ermf'led network
Marvel' @' Disable

Status

Diagnose
Bridge Connections

Create Shortcut
Delete

Rename

Properties

Networking | Sharing

Connect using:

| I_EP'___ Marvell Yukon BBER056 PCI-E Gigabit

This connection uses the following items:

4. From Advanced tab select Jumbo Packet property and increase its value up to 9014 Bytes (9k Bytes). This step might look differently

depending on the network card vendor. For some vendors this property might have different similar name (e.g. Large Packet). When there is
no property for enabling/setting large packet size this card does not support jumbo packets.

-mhlmm\a

The following properties are avaiable for this network adapter. Click
the property you wart to change on the left, and then select its value
on the right.

Property: Value:
Energy Star

Flow Control

Interrupt Moderation
|Pv4 Checksum Cffload

Large Send Ofﬂoad {IPv4

Log Status Messages

Max IRQ per Sec

Network Address

Receive Buffers

Speed & Duplex

TCP Checksum Offload (IPv4)
Transmit Buffers

UDP Checksum Offload {IPv4)

5. Click OK.

GigE Vision® Device Manager
The Device Manager is available as a separate tool in Fabimage Library SDK.
Device Manager Functions

Typical state of the Device Manager is shown on image below. Note that the window may change its appearance depending on its purpose (like
selecting a device address in a filter).

WgE Vision Device Manager ® x

Select source device: Refresh
Device name IP Address MAC Address Senal number User ID
Basler acA2500-14gc 10.57.168.190 00:30:53:17-5E:D1 21531601 Cam1
Identify this device in network by
® |P Address MAC Address Serial number
Select Cancel

At first the manager will search local network for active devices. All found devices will be shown in list with the following information: manufacturer
name and device name, current IP address, network interface hardware address (MAC address), serial number (if supported), user specified name
(saved in the device memory; if supported by device). Informations like MAC address and serial number should be printed on the device casing for
easy identification. Sometimes, when a device has more than one interface, is may appear in list more that once. In this situation every entry in the
list identifies another device feature.

Refresh

Refresh button performs a new search in the network. Use this function when the network configuration has been changed, a new device has been
plugged in or when your device has not been found at startup.

Select source device:

Device name IP Address MAC Address Serial number User ID
Basler acAZ500-14gc 10.57.168.190 00:30:53:17:5E:D1 21531601 Cam1

Tools

Tools button opens a menu with functions designed for device configuration. Some of these functions are device dependant and require the user to
selected a device on the list first (they are also available in a device context menu).

’.:i(x_lgE Vision Device Manager

Select source device: Refresh
Device name IP Address MAC Address Serial number User ID Access Device Settings..
Basler acA2500-14gc 1057.168130 003053175601 21531601 Cam1 EEIEE s
Device Details...
Save Device Diagnostic to File...
Assign Temporary IP for Unreachable Device...
Identify this device in network by X X
Application Transport Settings...
® |P Address MAC Address Serial number Open GenlCam XML Files Directory
Select Cancel

Tool: Access Device Settings...

This tool allows to access device-specific parameters prepared by its manufacturer and available through GenlCam interface.
See: Device Settings Editor

Tool: Setup Device Network Interface...

This tool is intended to manage network configuration of a device network adapter.

Basler acA2500-14gc network interface setup x

Static address Current address
IP: |10.57.168.1590 IP: |10.57.168.190
Subnet mask: | 255.255.248.0 Subnet mask: | 255.255.248.0
Default gateway: (0.0.0.0 Default gateway: |0.0.0.0

Device IP configuration

Use static [P

+#| Use Linklocal address

0K Cancel

o Static address — this field allows to set a static (persistent) network configuration saved in device non-volatile memory. Use this setting when
the device is identified by IP address that cannot change or when automatic address configuration is not available. This field has no effect
when Use static IP field is not checked.

e Current address — this read-only field shows current network configuration of a device, for example the address assigned to it by a DHCP
server.

https://docs.fab-image.com/5.3/fil/technical_issues/gigevision/DeviceSettingsEditor.html

« Device IP configuration — this field allows to activate or deactivate specified methods of acquiring addresses by a device on startup. Some
of this options can be not available (grayed) when the device is not supporting specified mode.

o Use static IP — Device will use address specified in Static address field.
o Use DHCP server — When a DHCP server is available in the network, devices will acquire automatically assigned address from it.

o Use Link-local address — When there is no other method available a device will try to find a free address from 169.254 .-.- range.
When using this method (for example on a direct connection between the device and a computer) the device will take significantly more
time to become available in network after startup.

After clicking OK the new configuration will be send to a device. Configuration can be changed only when the device is not used by another
application and/or is not streaming video. New configuration may be not available until the device is restarted or reconnected.

Tool: Assign Temporary IP for Unreachable Device

This tool is intended for situations when a device cannot be accessed because of its invalid or unspecified network configuration (note that this
should be a very rare case and usually the device should appear in list). The tool allows to immediately change network address of an idle device
(thus realizing GigE Vision® FORCE IP function).

Set Device Temporary IP Address b4

Device identification

Hardware MAC address:
00:30:53:17:5E:DL
New device address

IP address: |10.57.162.150
Subnet mask: |255.255.2458.0

Default gateway: |0.0.0.0

Send Close

This tool requires a user to specify device hardware network adapter MAC address (should be printed on device casing). After that a new IP
configuration can be specified. The address can be changed only when the device is idle (is not connected to other application and not streaming
video). The new address will be available immediately after successful send operation.

Tool: Application Transport Settings...

This tool allows to access and edit application settings related with driver transport layer, like connection attempts and timeouts. Settings are saved
and used at whole application level. Changes affects only newly opened connections.

Changes made in Device Manager application does not affect applications based on Fablmage Library. Application must set up its transport layer
configuration individually (see).

Tool: Open GenlCam XML Directory

GigE Vision® devices are implementing GenlCam standard. GenlCam standard requires that a device must be described by a special XML file that
defines all device parameters and capabilities. This file is usually obtained automatically by the application from the device memory or from
manufacturer's internet web page. Sometimes the XML file can be supplied by manufacturer on a separate disk. Fabimage Studio and Fabimage
Executor use a special directory for these files which is located in the user data directory. Use this tool to open that directory.

Device description files should be copied into this directory without changing their name, extension and content. File can also be supplied as a ZIP
archive — do not decompress such file nor change its extension.

Connecting Devices

Connecting a GigE Vision device to a computer means plugging both into the same Ethernet network.

It is recommended that the connection is as simple as possible. To achieve best performance use direct connection with a crossed Ethernet cable
or connect the camera and the computer to the same Ethernet switch (without any other heavy traffic routed through the same switch).

The device and the computer must reside in a single local area network and must be set up for the same subnet.

GigE Vision® is designed for 1 Gb/s networks, but it is also possible to use 100 Mb/s connection as long as the entire network connection have an
uniformed speed (some custom device configuration might be required when the device is not able to detect connection speed automatically). It is
recommended however to avoid connecting a device to a network link which is faster than the maximum throughput of the whole network route.
Such configurations require manual setting of the device's transmission speed limit.

https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_OpenSystemConfiguration.html

Firewall Issues

GigE Vision® protocol produces a specific type of traffic that is not firewall friendly. Typical firewall software is unable to recognize that video
streaming traffic is initialized by a local application and will block this connection. Fablmage's GigE driver attempts to overcome this problem using
firewall traversal mechanism, but not all devices support this.

It is thus required to enable incoming traffic on all UDP ports for Fablmage Studio and Fablmage Executor in a firewall on your local computer.

For information how to enable such traffic in Windows Firewall see:

Configuring IP Address of a Device

In most situations a GigE Vision device is able to automatically obtain an IP address without user action (using DHCP server or automatic local link
address). It is however recommended to set a static IP address for both local network card and device whenever possible. In some cases (e.g.
when preparing the device for operation in an industrial network) it might be required to access and set/change the device's network configuration for

a proper static IP address. Most suitable for this purpose will be a software and a documentation provided by the device manufacturer. When these
are not available Fablmage Studio offers universal configuration tools available from the GigE Vision Device Manager (see:).

Packet Size

Network video stream is divided into packets of a specified size. The packet size is limited by the Ethernet standard but some network cards support
an extension called jumbo packet that increases allowed packet size. Because a connection is more efficient when the packet size is bigger, the
application will attempt to negotiate biggest possible network packet size for current connection, taking advantage of enabled jumbo packets.

For information how to enable jumbo packets see:

Connecting Multiple Devices to a Single Computer

It is possible to connect multiple GigEVision cameras to a single computer and to perform image processing based on multiple video streams (e.g.
observing objects from multiple sides), however it can introduce multiple technical challenges that must be considered.

For the best performance it is recommended to connect all devices directly to the computer using multiple gigabit network cards:

In such configuration it is required for the computer hardware to handle concurrent gigabit streams at once. Even when separate network cards are
able to receive the network streams there still may be problems for the computer hardware to transfer data from the network adapters to the system
memory. Attention must be paid when choosing hardware for such applications. When given requirements are not met the system may observe
excessive packets loss leading to the video stream frames loss.

Even when the cameras framerate is low and the resulting average network throughput is relatively low the system still may drop packets during
network bursts when the momentary data transfer exceeds the system capabilities. Such burst may appear when multiple cameras transmit a
single frame at the same time. By default GigEVision camera is transferring a single frame with maximum available speed and lowering framerate is
only increasing the gaps between frame transfers:

Momentary (burst) transfer: 2.0 Gb/s

Camera #1 | |

Camera #2

| -

[N A J Time
Average bandwidth utilization: 0.5 Gb/s

Although diagnostic tools will report network throughput utilization to be well below system limits it is still possible for short burst transfers to
temporary exceed the system limits resulting in packets drop. To overcome such problems it is required to not only ensure camera framerates to be
below proper limit, but also to limit the maximum network transfer speed of the device network adapters. Refer to the device documentation for
details about how to limit the network transfer speed in specific device. Usually this can be achieved by decreasing value of parameters such as
DeviceLink ThroughputLimit or StreamBytesPerSecond (in bytes per second), or by introducing delays in between the network packets by increasing
parameters such as PacketDelay, InterPacketDelay or GevSCPD (measured in internal device timer ticks - must be calculated individually for
device using device timer frequency).

Above requirements are especially important when cameras are connected to the computer using a single network card and a shared network
switch:

Special care must be taken to assure that all the cameras connected to the switch (when all transmitting at once) do not exceed transfer limits of the
connection between the switch and the computer, both average transfer (by limiting the framerate) as well as temporary burst transfer (by limiting
network transfer speed). Network switch will attempt to handle burst transfers by storing the packets in its internal buffer and transmitting packets
stored in the buffer after the burst, but when the amount of data in burst transfer exceeds the buffer size the network packets will be dropped. Thus it
is required for the switch buffer to be large enough to store all camera frames captured at once, or to limit transmission speed for the switch buffer to
not overflow.

It is important to note that the maximum performance of the multi-camera system with shared network switch is limited by the throughput of
the link between the switch and the computer, and usually it will not be possible to achieve the maximum framerate and/or resolution of the
cameras.

A common case of using multiple cameras at once is to capture multiple photos of a object from a single trigger source (with synchronous

https://docs.fab-image.com/5.3/fil/technical_issues/gigevision/EnablingFirewallTraffic.html
https://docs.fab-image.com/5.3/fil/technical_issues/gigevision/DeviceManager.html
https://docs.fab-image.com/5.3/fil/technical_issues/gigevision/EnablingJumboPackets.html

triggering):

All above recommendations must be considered for such configuration. Because under synchronous triggering all the cameras will always be
transferring images at the same time the problem of momentary burst transfer is especially present. Care must be taken to limit the maximum
network transmission speed in the cameras to the system limits and to give enough time between trigger events for the cameras to finish the
transfer.

Device Settings Editor

GigE Vision® compliant devices are implementing GenlCam standard that describes camera internal parameters and a way how to access them.
Device Manager allows a user to access and edit device settings through a Settings Editor tool (available from Tools » Access Device Settings).

Example appearance of the Device Settings Editor is shown on the image below.

ACAZ500-145 Genleam setings

7+ “1§ Analog Cortrols
..% Image Format Controls
g Al Cortrols This float value sets the camera’s exposure time in
- “t§ Color Improvements Cortrol T microseconds.
: -3 Acquisition Controls
----- 4 Acouistion Mode
. # Mcquistion Start
Acquistion Stop Edit | Information
AcquistionFrameCourt
Trigger Selector
Trigger Mode
Generate Software Trigger
Trigger Source
Trigger Activation
Trigger Delay {4bs)
Exposure Mode
Exposure Auto
Exposure Time (Abs)
Exposure Time (Raw)
Readout Time {Abs}
Global Reset Release Mode Enable
Enable Acquisition Frame Rate
Acquistion Frame Rate {Abs)
Resulting Frame Rate (Abs)
Acquistion Status Selector
----- & Acquistion Status
- %% Diaital 1/0 Cantrols

Exposure Time (Abs)

[14310 us

#
.s;
@
0

"
'S;

@
@

e
P
&
g
&

3
@
@

S

Y
&

Visibility: | Expert - Q

Close

On the left side of the window is a tree representation of device parameters split into categories. All these parameters and their organization is device
dependent, which means that different devices can produce different sets of parameters, with different meanings. Parameter's friendly name and a
brief explanation (also provided by a device) is shown on the right side of the window after the parameter is highlighted in tree. For more information
about specific parameter functions refer to a device documentation.

When editing selected parameter is possible and supported, an editor of the parameter value will be displayed below its explanation. Different editors
are provided for the following parameter types:

L]

Integer - Plain number or hexadecimal number (indicated by Hex label on the left side of the text box). Values are limited by their maximum,
minimum and allowed step. Numbers that does not fulfill this rules are corrected automatically upon confirmation. After clicking on Save button
(or pressing Enter) new value will be validated and sent to the device.

Float - Real number with fractional part. Values are limited by their maximum and minimum. Numbers that do not match this range are
corrected automatically upon confirmation. A parameter can also have suggested step added after clicking in +/- buttons. After clicking on
Save button (or pressing Enter) new value will be validated and sent to the device.

String - Text of a limited length.
Boolean - Single Yes/No value represented by check box. A value is sent to the device immediately after check state is changed.

Enumeration - Parameter that accepts one of several predefined values. Predefined values are represented as list of their friendly names.
Parameter is edited by choosing one of its values from a drop-down list. New values are sent to the device immediately after their selection in
the list.

https://docs.fab-image.com/5.3/fil/technical_issues/gigevision/DeviceManager.html

o Command - This is a special parameter that is represented only by a single button. Clicking on button will execute related activity in the device
(for example Saving current parameter set to non-volatile memory).

Depending on situation, editor can be disabled (grayed), which means that this parameter is currently locked (for example parameter describing
image format when the camera streaming is active). Editor can be read only (Save button grayed, grayed drop-down list or unchangeable check-
box), which means that this parameter is read-only (for example informational parameters like manufacturer name).

Instead of an editor can there also be a displayed text: "This parameter is currently not available". This means that the parameter can not be
accessed or edited in the current device state or due to other parameter states. For example parameter describing acquisition frame rate value,
when the user selection of frame rate is disabled (by parameter like Enable Acquisition Framerate).

Sometimes with the parameter editor displayed will be an additional editor, named selector.

Line Mode

Controls whether the physical Line is used ta Input or
Output a signal

Edit | Information

Line Selector

Line 1

In such situation selected parameter is connected with one of categories (slots) described by selector. In the example on the above image,
parameter is determining whether the physical Line is used to Input or Output a signal. This device has two lines and both have its own separate
values to choose from. Selector will pick which line we want to edit and bottommost editor will change it purpose. This means that there are actually
two different Line Modes parameters in device.

Please note that selector will not always be displayed above editor. You must follow a device documentation and search parameters tree for
selectors and other parameters on which this parameter is dependent.

The Device Settings Editor can be used to identify device capabilities and descriptions or to set up a new device. Device Editor can be also used
when a program is running and the camera is streaming. In this situation changes should be immediately visible in the camera output.

Settings Editor gives a user an unlimited access to the device parameters and, when used improperly, can put device in an invalid state in
which the device will become inaccessible by applications or can cause transitional errors in the program execution.

Saving Device Configuration

Most parameters available in the Settings Editor are stored by devices in a volatile memory and will be lost (reset to default) after device reset or
power down.

A device should offer functions to save parameters set in Configuration Sets section of parameters tree. Refer to a device documentation for more
information about configuration set saving and loading.

Parameter Information

Settings editor can also show information about selected parameter (by switching the tab on right side of the window).

7+ “1§ Analog Cortrols

-%1% Image Format Controls

~¥1§ AOI Cortrols This float value sets the camera’s exposure time in

7“4 Color Improvements Cortrol microseconds.

: -3 Acquisition Controls

----- 4 Acouistion Mode

Acquistion Start

Acquistion Stop Edit | Information

AcquistionFrameCount

Trigger Selector 5 Name: ExposureTimeibs
Type: IFloat

Access: Bead only

Exposure Time (Abs)

Trigger Mode

Generate Software Trigger
Trigger Source

Trigger Activation

Trigger Delay (4bs)
Exposure Mode Range: 35 - 999985
Exposure Auto

Exposure Time (Abs)

Exposure Time (Raw)

Readout Time {Abs}

Global Reset Release Mode Enable
Enable Acquisition Frame Rate
Acquistion Frame Rate {Abs)
Resulting Frame Rate (Abs)
Acquistion Status Selector

----- 4 Acquistion Status

14 Digtal 1/0 Controls

. ¥ Sennenes Canteal

Vishbilty: Guru Q

Value cache: No
Access cache: Yes

$LLLLLLLVLOIOL NGO UK

Close

In this mode the window appearance is changed. Instead of editors, on the right side of the window displayed are useful informations for a program
developer, including:

o Name - parameter internal name. Note that parameter tree and descriptions are using human friendly name, not parameter ID. This field
shows a proper parameter ID that must be used in parameter get/set functions.

o Type - parameter type name. This type must be consistent with the filter value type.

e Access - allowed access to parameter. Parameter must be writable to be set by program.

e Range - for numeric parameters this field shows the allowed range. Range of some parameters can change dynamically during its operation.

e Value cache - when GenAPI cache is enabled this field indicates if device allows to store this parameter value in local memory to reduce
network operations.

o Access cache - when GenAPI cache is enabled this field indicates if device allows to store access mode of this parameter in local memory to
reduce network operations on controlling parameter accessibility.

Available entries - for enumeration parameters this field will list currently available values for a parameter. The field shows proper internal IDs
that should be used when setting the parameter (note that editor's drop-down lists are using human friendly names).

Known Issues

In this section you will find solutions to known issues that we have came across while testing communication between Fablmage products and
different camera models through GigE Vision.

Imaging Source Cameras

There might be problems with image acquisition from Imaging Source cameras through GigE. It's caused by the implementation (regarding caching
and packet size) of GigE Vision standard in those cameras and as a result no image can be seen in Fablmage Studio (the previews are empty
during program execution).

To resolve this issue, a camera restart (this has to be done only once, after you encounter the problem with image acquisition) and changing some
parameters in Fablmage GenAPI configuration are required. Parameters which should be changed are:

e Enable GenAPI Cache (should be set to False),
o Disable Packet Size Negotiation (should be set to True),

e Enable Constant Packet Size (should be set to False).

In order to change these parameters you should (before opening device connection) open library configuration with function
, and using GenApi function set the following parameters (please note that these parameters have to be set
separately for each application):

e GevAppTLEnableGenApiCache (Boolean) to False
e GevAppTLDisablePacketSizeNegotiation (Boolean) to True
e GevAppTLEnableConstantPacketSize (Boolean) to False

https://docs.fab-image.com/5.3/fil/functions/GigEVision/GigEVision_OpenSystemConfiguration.html

5. Machine Vision Guide

Table of content:

e |Image Processing

e Blob Analysis

e 1D Edge Detection

o 1D Edge Detection — Subpixel Precision

e Shape Fitting

e Template Matching

e Using Local Coordinate Systems

e Camera Calibration and World Coordinates

e Golden Template

Image Processing

Introduction
There are two major goals of Image Processing techniques:

1. To enhance an image for better human perception

2. To make the information it contains more salient or easier to extract

It should be kept in mind that in the context of computer vision only the second point is important. Preparing images for human perception is not part
of computer vision; it is only part of information visualization. In typical machine vision applications this comes only at the end of the program and
usually does not pose any problem.

The first and the most important advice for machine vision engineers is: avoid image transformations designed for human perception when
the goal is to extract information. Most notable examples of transformations that are not only not interesting, but can even be highly disruptive, are:

e JPEG compression (creates artifacts not visible by human eye, but disruptive for algorithms)
e CIE Lab and CIE XYZ color spaces (specifically designed for human perception)
e Edge enhancement filters (which improve only the "apparent sharpness")
e Image thresholding performed before edge detection (precludes sub-pixel precision)
Examples of image processing operations that can really improve information extraction are:
e Gaussian image smoothing (removes noise, while preserving information about local features)
e Image morphology (can remove unwanted details)
e Gradient and high-pass filters (highlight information about object contours)
e Basic color space transformations like HSV (separate information about chromaticity and brightness)

o Pixel-by-pixel image composition (e.g. can highlight image differences in relation to a reference image)

Regions of Interest

The image processing tools provided by Fabimage have a special inRoi input (of type), that can limit the spatial scope of the operation. The
region can be of any shape.

An input image and the inRoi. Result of an operation performed within inRoi.

Remarks:

e The output image will be black outside of the inRoi region.
e To obtain an image that has its pixels modified in inRoi and copied outside of it, one can use the filter.
o The default value for inRoi is Auto and causes the entire image to be processed.

o Although inRoi can be used to significantly speed up processing, it should be used with care. The performance gain may be far from
proportional to the inRoi area, especially in comparison to processing the entire image (Auto). This is due to the fact, that in many cases more
SSE optimizations are possible when inRoi is not used.

Some filters have a second region of interest called inSourceRoi. While inRoi defines the range of pixels that will be written in the output image, the
inSourceRoi parameter defines the range of pixels that can be read from the input image.

Image Boundary Processing

Some image processing filters, especially those from the category, use information from some local neighborhood of a
pixel. This causes a problem near the image borders as not all input data is available. The policy applied in our tools is:

e Never assume any specific value outside of the image, unless specifically defined by the user.

o [f only partial information is available, it is better not to detect anything, than detect something that does not exist.

In particular, the filters that use information from a local neighborhood just use smaller (cropped) neighbourhood near the image borders. This is
something, however, that has to be taken into account, when relying on the results — for example results of the smoothing filters can be up to 2 times
less smooth at the image borders (due to half of the neighborhood size), whereas results of the morphological filters may "stick" to the image
borders. If the highest reliability is required, the general rule is: use appropriate regions of interest to ignore image processing results that
come fromincomplete information (near the image borders).

Toolset

https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/ComposeImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/index.html

Image Combinators

The filters from the Image Combinators category take two images and perform a pixel-by-pixel transformation into a single image. This can be used
for example to highlight differences between images or to normalize brightness — as in the example below:

Input image with high reflections. Image of the reflections (calibrating). The result of applying Dividelmages with inScale = 128 (inRoi
was used).

Image Smoothing

The main purpose of the image smoothing filters (located in the Image Local Transforms category) is removal of noise. There are several different
ways to perform this task with different trade-offs. On the example below three methods are presented:

1. Mean smoothing — simply takes the average pixel value from a rectangular neighborhood; it is the fastest method.

2. Median smoothing — simply takes the median pixel value from a rectangular neighborhood; preserves edges, but is relatively slow.

3. Gauss smoothing — computes a weighted average of the pixel values with Gaussian coefficients as the weights; its advantage is isotropy and
reasonable speed for small kernels.

Input image with some noise. Result of applying Result of applying Result of applying
Smoothlmage_Mean. Smoothimage_Gauss. Smoothimage_Median.

Image Morphology

Basic morphological operators — Dilatelmage and Erodelmage — transform the input image by choosing maximum or minimum pixel values from a
local neighborhood. Other morphological operators combine these two basic operations to perform more complex tasks. Here is an example of
using the Openlmage filter to remove salt and pepper noise from an image:

Input image with salt-and-pepper noise. Result of applying Openlmage.

Gradient Analysis

An image gradient is a vector describing direction and magnitude (strength) of local brightness changes. Gradients are used inside of many
computer vision tools — for example in object contour detection, edge-based template matching and in barcode and DataMatrix detection.

Available filters:
e Gradientimage — produces a 2-channel image of signed values; each pixel denotes a gradient vector.

e GradientMagnitudelmage — produces a single channel image of gradient magnitudes, i.e. the lengths of the vectors (or their approximations).

e GradientDirAndPresencelmage — produces a single channel image of gradient directions mapped into the range from 1 to 255; 0 means no
significant gradient.

https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageCombinators/DivideImages.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Mean.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/DilateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/ErodeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/OpenImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/OpenImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html

An input image. Result of

Result of . Diagnostic output of showing hue-coded directions.

Spatial Transforms

Spatial transforms modify an image by changing locations, but not values, of pixels. Here are sample results of some of the most basic operations:

Result of .

Result of : Resuit of : Result of

Result of Result of . Result of - Result of applied to the
- result of .

There are also interesting spatial transform tools that allow to transform a two dimensional vision problem into a 1.5-dimensional one, which can be
very useful for further processing:

An input image and a path.

Result of

Spatial Transform Maps
The spatial transform tools perform a task that consist of two steps for each pixel:

1. compute the destination coordinates (and some coefficients when interpolation is used),

2. copy the pixel value.

https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/GradientImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/MirrorImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/RotateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ShearImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/DownsampleImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TransposeImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/TranslateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/UncropImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImageAlongPath.html

In many cases the transformation is constant — for example we might be rotating an image always by the same angle. In such cases the first step —
computing the coordinates and coefficients — can be done once, before the main loop of the program. Fablmage provides the Image Spatial
Transforms Maps category of filters for exactly that purpose. When you are able to compute the transform beforehand, storing it in the Spatial\Viap
type, in the main loop only the Remaplmage filter has to be executed. This approach will be much faster than using standard spatial transform tools.

The SpatialVap type is a map of image locations and their corresponding positions after given geometric transformation has been applied.

Additionally, the Image Spatial Transforms Maps category provides several filters that can be used to flatten the curvature of a physical object. They
can be used for e.g. reading labels glued onto curved surfaces. These filters model basic 3D objects:

1. Cylinder (CreateCylinderMap) — e.g. flattening of a bottle label.
2. Sphere (CreateSphereMap) — e.g. reading a label from light bulb.
3. Box (CreatePerspectiveMap Points or CreatePerspectiveMap Path) — e.g. reading a label from a box.

4. Circular objects (polar transform) (CreatelmagePolarTransformMeap) - e.g. reading a label wrapped around a DVD disk center.

Example of remapping of a spherical object using CreateSphereMap and Remaplmage. Image before and after remapping.

Furthermore custom spatial maps can be created with ConvertMatrixMaps ToSpatialMap.

An example of custom image transform created with ConvertMatrixMaps ToSpatialMap. Image before and after remapping.

Image Thresholding

The task of Image Thresholding filters is to classify image pixel values as foreground (white) or background (black). The basic filters Thresholdimage
and ThresholdToRegion use just a simple range of pixel values — a pixel value is classified as foreground iff it belongs to the range. The
Thresholdimage filter just transforms an image into another image, whereas the ThresholdToRegion filter creates a region corresponding to the
foreground pixels. Other available filters allow more advanced classification:

e Thresholdimage Dynamic and ThresholdToRegion Dynamic use average local brightness to compensate global illumination variations.
e Thresholdimage RGB and ThresholdToRegion RGB select pixel values matching a range defined in the RGB (the standard) color space.
e Thresholdimage HSxand ThresholdToRegion HSx select pixel values matching a range defined in the HSx color space.

e Thresholdimage Relative and ThresholdToRegion Relative allow to use a different threshold value at each pixel location.

}. IIZ

Input image with uneven light. Result of Thresholdlmage — the bars can not be Result of Thresholdlmage Dynamic — the bars
recognized. are correct.

There is also an additional filter SelectThresholdValue which implements a number of methods for automatic threshold value selection. It should,
however, be used with much care, because there is no universal method that works in all cases and even a method that works well for a particular
case might fail in special cases.

https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/index.html
https://docs.fab-image.com/5.3/fil/datatypes/SpatialMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.fab-image.com/5.3/fil/datatypes/SpatialMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreateCylinderMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Points.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Path.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreateImagePolarTransformMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_RGB.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_HSx.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_Relative.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/SelectThresholdValue.html

Image Pixel Analysis

When reliable object detection by color analysis is required, there are two filters that can be useful: ColorDistance and ColorDistancelmage. These
filters compare colors in the RGB space, but internally separate analysis of brightness and chromaticity. This separation is very important, because
in many cases variations in brightness are much higher than variations in chromaticity. Assigning more significance to the latter (high value of the
inChromaAmount input) allows to detect areas having the specified color even in presence of highly uneven illumination:

Input image with uneven light. Result of ColorDistancelmage for the red color with Result of thresholding reveals the
inChromaAmount = 1.0. Dark areas correspond to low location of the red dots on the globe.
color distance.

Image Features

Image Features is a category of image processing tools that are already very close to computer vision — they transform pixel information into simple
higher-level data structures. Most notable examples are: Imagel.ocallMaxima which finds the points at which the brightness is locally the highest,
ImageProjection which creates a profile from sums of pixel values in columns or in rows, Image/Average which averages pixel values in the entire
region of interest. Here is an example application:

ARB1OBPIOG

4231039000

Input image with digits to be segmented. Result of preprocessing with Closelmage.

Profile of the vertical projection revealing regions of digits and the

Digit locations extracted by applying Smoothlmage Gauss and
boundaries between them.

ImageLocalMaxima.

Blob Analysis

Introduction

Blob Analysis is a fundamental technique of machine vision based on analysis of consistent image
regions. As such it is a tool of choice for applications in which the objects being inspected are clearly
discernible from the background. Diverse set of Blob Analysis methods allows to create tailored
solutions for a wide range of visual inspection problems.

Main advantages of this technique include high flexibility and excellent performance. Its limitations
are: clear background-foreground relation requirement (see Template Matching for an alternative)
and pixel-precision (see 1D Edge Detection for an alternative).

Concept
Let us begin by defining the notions of region and blob.

e Region is any subset of image pixels. In Fablmage Studio regions are represented using Region data type.

e Blob is a connected region. In Fabimage Studio blobs (being a special case of region) are represented using the same Region data type. They
can be obtained from any region using a single SplitRegionintoBlobs filter or (less frequently) directly from an image using image segmentation
filters from category Image Analysis techniques.

e @ B e @ P B e @ ¢ B
S F OH P & HOSS P S HOS P
® 9P 8 ® 98 ® =Y

An example image. Region of pixels darker than 128. Decomposition of the region into array of
blobs.

The basic scenario of the Blob Analysis solution consists of the following steps:

https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ColorDistance.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ColorDistanceImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ColorDistanceImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/index.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageProjection.html
https://docs.fab-image.com/5.3/fil/functions/ImagePixelStatistics/ImageAverage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/CloseImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/TemplateMatching.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/index.html

1. Extraction - in the initial step one of the Image Thresholding techniques is applied to obtain a region corresponding to the objects (or single
object) being inspected.

2. Refinement - the extracted region is often flawed by noise of various kind (e.g. due to inconsistent lightning or poor image quality). In the
Refinement step the region is enhanced using region transformation techniques.

3. Analysis - in the final step the refined region is subject to measurements and the final results are computed. If the region represents multiple
objects, it is split into individual blobs each of which is inspected separately.

Examples

The following examples illustrate the general schema of Blob Analysis algorithms. Each of the techniques represented in the examples (thresholding,
morphology, calculation of region features, etc.) is inspected in detail in later sections.

Rubber Band

In this, idealized, example we analyze a picture of an electronic device wrapped in a e —
rubber band. The aim here is to compute the area of the visible part of the band (e.g. - o i =%
to decide whether it was assembled correctly). : w4’ i

P.

=
B EErrtrFEEES

ANEE i

inBeginHue A o
inEndHue :
inMinSaturation®
inMaxSaturation® Initial image
inMinErightness*

inMaxBrightness®

inRgblmage

inRaoi*

outRegion

inRegion

outRegion

inRegion)
Extraction

In this case each of the steps: Extraction, Refinement and Analysis is represented
by a single filter.

Extraction - to obtain a region corresponding to the red band a Color-based
Thresholding technique is applied. The ThresholdToRegion HSx filter is capable of
finding the region of pixels of given color characteristics - in this case it is targeted to
detect red pixels.

Refinement - the problem of filling the gaps in the extracted region is a standard Refinement

one. Classic solutions for it are the region morphology techniques. Here, the
CloseRegion filter is used to fill the gaps.

Analysis - finally, a single RegionArea filter is used to compute the area of the
obtained region.

Results

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/CloseRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionArea.html

Mounts

In this example a picture of a set of mounts is inspected to identify the damaged
ones.

inMinValue* |

linmage

inRai* .
| - - 5
|outRegion inMaxValue :
linRegion

|outBlobs[]

inRegions[] ¢ inMinimum® |
|outAccepted]] oL inMaximum®*
loutRejected(] = outValues[]|

Extraction - as the lightning in the image is uniform, the objects are consistently
dark and the background is consistently bright, the extraction of the region
corresponding to the objects is a simple task. A basic filter does
the job, and does it so well that no Refinement phase is needed in this example.

Analysis - as we need to analyze each of the blobs separately, we start by applying
the filter to the extracted region.

To distinguish the bad parts from the correct parts we need to pick a property of a
region (e.g. area, circularity, etc.) that we expect to be high for the good parts and
low for the bad parts (or conversely). Here, the area would do, but we will pick a
somewhat more sophisticated rectangularity feature, which will compute the
similarity-to-rectangle factor for each of the blobs.

Once we have chosen the rectangularity feature of the blobs, all that needs to be
done is to feed the regions to be classified to the filter (and to set its

inMinimum value parameter). The blobs of too low rectangularity are available at the
outRejected output of the classifying filter.

Extraction

There are two techniques that allow to extract regions from an image:

e ®E

® &

4 P

® =\ QE

Input image

e s E

S &

4 P

® =\ QP 8H

Extraction

I

& &

S P

® | Q8

Analysis

@e ¢ B

& &

s ®

®$9 8

Results

« Image Thresholding - commonly used methods that compute a region as a set of pixels that meet certain condition dependent on the
specific operator (e.g. region of pixels brighter than given value, or brighter than the average brightness in their neighborhood). Note that the

resulting data is always a single region, possibly representing numerous objects.

« Image Segmentation - more specialized set of methods that compute a set of blobs corresponding to areas in the image that meet certain

condition. The resulting data is always an array of connected regions (blobs).

Thresholding

Image Thresholding techniques are preferred for common applications (even those in which a set of objects is inspected rather than a single object)
because of their simplicity and excellent performance. In Fabimage Studio there are six filters for image-to-region thresholding, each of them

implementing a different thresholding method.

ThresholdToRedi
9
Brightness- ::'F:”;ge ‘l inMinValue
based outRegion \ A inMaxValue
(basic)

ThresholdToRegion_Relative

Bl’lgahstggss- !n:;na.ge l inMinRelativeValue
inRoi -
e inBasel n
(addltlonal) :Lnaﬁs:g:-;:ge \‘ inMaxRelativeValue
ThresholdToRegion_RGB
inMinRed
inRgbimage inMaxRed
Color- inMinGreen
- o - inMaxiGreen
based LR \\l* inMinBlue
inMaxBlue
outRegion inMinAlpha
inMaxAlpha

Classic Thresholding

ThresholdToRegion_Dy

inlmage

inRoi inMinRelativeValue

inSourceRoi \‘L

diagBaselmage inMaxRelativeValue

outRegion

ThresholdToRegion_HSx
inRgblmags inBeginHue
inEndHue

inRoi ‘l inMinSaturation

diagHSximage \ al inMaxSaturation
inMinBrightness

outRegion inMaxBrightness

simply selects the image pixels of the specified brightness. It should be considered a basic tool and applied whenever the
intensity of the inspected object is constant, consistent and clearly different from the intensity of the background.

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/ClassifyRegions.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html

e @ ¢ B & @ ¢ B
S 5 s P S &5 s P
® = Q8 $ «QE

Dynamic Thresholding

Inconsistent brightness of the objects being inspected is a common problem usually caused by the imperfections of the lightning setup. As we can
see in the example below, it is often the case that the objects in one part of the image actually have the same brightness as the background in
another part of the image. In such case it is not possible to use the basic ThresholdToRegion filter and ThresholdToRegion_Dynamic should be
considered instead. The latter selects image pixels that are locally bright/dark. Specifically - the filter selects the image pixels of the given relative
local brightness defined as the difference between the pixel intensity and the average intensity in its neighborhood.

& @O ¥ @ % BE
® = $ "4

Color-based Thresholding

When inspection is conducted on color images it may be the case that despite a significant difference in color, the brightness of the objects is
actually the same as the brightness of their neighborhood. In such case it is advisable to use Color-based Thresholding filters:
ThresholdToRegion_RGB, ThresholdToRegion_HSx. The suffix denote the color space in which we define the desired pixel characteristic and not
the space used in the image representation. In other words - both of these filters can be used to process standard RGB color image.

[0 i e EM.;. 7 b

i =

An example image. Mono equivalent of the image depicting Result of the color-based thresholding
brightness of its pixels. targeted at red pixels.
Refinement
Region Morphology

Region Morphology is a classic technique of region transformation. The core concept of this toolset is the usage of a structuring element also known
as the kernel. The kernel is a relatively small shape that is repeatedly centered at each pixel within dimensions of the region that is being
transformed. Every such pixel is either added to the resulting region or not, depending on operation-specific condition on the minimum number of
kernel pixels that have to overlap with actual input region pixels (in the given position of the kernel). See description of Dilation for an example.

Expanding Reducing
DilateRegion ErodeRegion
H inRegion inRegion r
Basic : : A
outRegion out Region

CloseRegion OpenRegion
Conposite inRegion » \ inRegion .w\
outRegion — outRRegion =

Dilation and Erosion

Dilation is one of two basic morphological transformations. Here each pixel P within the dimensions of the region being transformed is added to the
resulting region if and only if the structuring element centered at P overlaps with at least one pixel that belongs to the input region. Note that for a
circular kernel such transformation is equivalent to a uniform expansion of the region in every direction.

(=]

Erosion is a dual operation of Dilation. Here, each pixel P within the dimensions of the region being transformed is added to the resulting region if
and only if the structuring element centered at P is fully contained in the region pixels. Note that for a circular kernel such transformation is equivalent
to a uniform reduction of the region in every direction.

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_HSx.html

Closing and Opening

The actual power of the Region Morphology lies in its composite operators - Closing and Opening. As we may have recently noticed, during the
blind region expansion performed by the Dilation operator, the gaps in the transformed region are filled in. Unfortunately, the expanded region no
longer corresponds to the objects being inspected. However, we can apply the Erosion operator to bring the expanded region back to its original
boundaries. The key point is that the gaps that were completely filled during the dilation will stay filled after the erosion. The operation of applying
Erosion to the result of Dilation of the region is called Closing, and is a tool of choice for the task of filling the gaps in the extracted region.

Opening is a dual operation of Closing. Here, the region being transformed is initially eroded and then dilated. The resulting region preserves the
form of the initial region, with the exception of thin/small parts, that are removed during the process. Therefore, Opening is a tool for removing the
thin/outlying parts from a region. We may note that in the example below, the Opening does the - otherwise relatively complicated - job of finding the
segment of the rubber band of excessive width.

Other Refinement Methods

Analysis

Once we obtain the region that corresponds to the object or the objects being inspected, we may commence the analysis - that is, extract the
information we are interested in.

Region Features

Fablmage Studio allows to compute a wide range of numeric (e.g. area) and non-numeric (e.g. bounding circle) region features. Calculation of the
measures describing the obtained region is often the very aim of applying the blob analysis in the first place. If we are to check whether the
rectangular packaging box is deformed or not, we may be interested in calculating the rectangularity factor of the packaging region. If we are to check
if the chocolate coating on a biscuit is broad enough, we may want to know the area of the coating region.

It is important to remember, that when the obtained region corresponds to multiple image objects (and we want to inspect each of them separately),
we should apply the SplitRegionintoBlobs filter before performing the calculation of features.

Numeric Features
Each of the following filters computes a number that expresses a specific property of the region shape.

Annotations in brackets indicate the range of the resulting values.

https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html

RegionArea

Ce

inRegion
oA

outhrea

Size of the region (0 - o)

inRegion w

-

outConvexity

Similarity to own convex hull (0.0 - 1.0)

RegionElongation

Ce

inRegion
R

outBlongation

Similarity to a line (0.0 - =)

RegionNumberOfHoles

inRegion w

-

outMumberOfHoles

Count of the region holes (0 -)

RegionPerimeterLength

Ce

inRegion
o

outPerimeterLength

Length of the region contour (0.0 - =)

Non-numeric Features

RegionCircularity
inRegion n
' utCirculari
diagCircle [e

Similarity to a circle (0.0 - 1.0)

inRegion w

out Rectangularity
-

Similarity to a rectangle (0.0 - 1.0)

outMoment
out NormMoment

inRegion @

Moments of the region (0.0 - =)
RegionOrientation
)) F" infAngleRange
AT g&. outOrientationAngle

Orientation of the main region axis (0.0 - 180.0)

Each of the following filters computes an object related to the shape of the region. Note that the primitives extracted using these filters can be made
subject of further analysis. For instance, we can extract the holes of the region using the RegionHoles filter and then measure their areas using the

RegionArea filter.

Annotations in brackets indicate Fablmage Studio's type of the resuilt.

inRegion F"
outBoundingBax L.t;.
Smallest axis-aligned rectangle containing the region (Box)
RegionBoundingRectangle
inRegion F1
outBoundingRectangle Lg..

Smallest any-orientation rectangle containing the region (Rectangle2D)

inRegion
outDiameter

7'1

R

outDiameterLength

Longest segment connecting two points inside the region (Segment2D)

.

inRegion
outSkeletonPaths

Ce

"

Skeleton of the region (PathArray)

Case Studies

Capsules

RegionBoundingCircle
inRegion F"
out BoundingCircle g&.
Smallest circle containing the region (Circle2D)
inRegion F"
outContours L‘A.'..
Boundaries of the region (PathArray)
RegionHoles
inRegion w
outHoles e ”

Array of blobs representing gaps in the region (RegionArray)

In this example we inspect a set of washing machine capsules on a conveyor line. Our aim is to identify the deformed capsules.

We will proceed in two steps: we will commence by designing a simple program that, given picture of the conveyor line, will be able to identify the
region corresponding to the capsule(s) in the picture. In the second step we will use this program as a building block of the complete solution.

https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionFeatures/RegionArea.html

FindRegion Routine

In this section we will develop a program that will be responsible for the Extraction
and Refinement phases of the final solution. For brevity of presentation in this part
we will limit the input image to its initial segment.

esholdToRegion: Intensity Initial image

2. FillRegionHoles
)

S

3. OpenRegion: Standard

ThresholdToRegion

After a brief inspection of the input image we may note that the task at hand will not be
trivial - the average brightness of the capsule body is similar to the intensity of the
background. On the other hand the border of the capsule is consistently darker than FillRegionHoles
the background. As it is the border of the object that bears significant information
about its shape we may use the basic ThresholdToRegion filter to extract the darkest
pixels of the image with the intention of filling the extracted capsule border during
further refinement.

The extracted region certainly requires such refinement - actually, there are two
issues that need to be addressed. We need to fill the shape of the capsule and
eliminate the thin horizontal stripes corresponding to the elements of the conveyor line
setup. Fortunately, there are fairly straightforward solutions for both of these
problems.

OpenRegion

FillRegionHoles will extend the region to include all pixels enclosed by present region
pixels. After the region is filled all that remains is the removal of the thin conveyor lines
using the classic OpenRegion filter.

Our routine for Extraction and Refinement of the region is ready. As it constitutes a continuous block of filters performing a well defined task, it is
advisable to encapsulate the routine inside a function to enhance the readability of the soon-to-be-growing program.

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/FillRegionHoles.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/OpenRegion.html

0. LoadImage

esholdToRegion: Intensity

B llintia et

Disable Selected Instances Ctrl+L

Run enly in Diagnostic Mode

Copy Ctrl+C
Paste Ctrl= Y
Cut Ctrl+X
Select All Instances Ctrl+A

Remove Selected Instances Del

Extract Step... Cirl+E
Extract Variant Step (if)...

Extract Vanant Step (switch)...
Extract Task (loop)...

0. LoadImage

1. Find_Region

rawRegions: SingleColor

Complete Solution

Our program right now is capable of extracting the region that ACQUIRE 0. LoadImage
directly corresponds to the capsules visible in the image.
What remains is to inspect each capsule and classify it as a
correct or deformed one.

As we want to analyze each capsule separately, we should 1. Find_Region
start with decomposition of the extracted region into an array
of connected components (blobs). This common operation
can be performed using the straightforward 2. SplitRegionIntoBlobs
SplitRegionIntoBlobs filter. ir

We are approaching the crucial part of our solution - how are
we going to distinguish correct capsules from deformed 3. ClassifyRegions
ones? At this stage it is advisable to have a look at the ; :
summary of numeric region features provided in Analysis
section. If we could find a numeric region property that is
correlated with the nature of the problem at hand (e.g. it takes
low values for a correct capsules and high values for a
deformed one, or conversely), we would be nearly done.

Rectangularity of a shape is defined as the ratio between its area and area of its smallest enclosing rectangle - the higher the value, the more the
shape of the object resembles a rectangle. As the shape of a correct capsule is almost rectangular (it is a rectangle with rounded corners) and
clearly more rectangular than the shape of deformed capsule, we may consider using rectangularity feature to classify the capsules.

Having selected the numeric feature that will be used for the classification, we are ready to add the ClassifyRegions filter to our program and feed it
with data. We pass the array of capsule blobs on its inRegions input and we select Rectangularity on the inFeature input. After brief interactive
experimentation with the inMinimum threshold we may observe that setting the minimum rectangularity to 0.95 allows proper discrimination of
correct (available at outAccepted) and deformed (outRejected) capsule blobs.

Region extracted by the FindRegion routine.

Decomposition of the region into individual blobs.

https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/fil/functions/RegionRelations/ClassifyRegions.html

Blobs of low rectangularity selected by ClassifyRegions filter.

1D Edge Detection

Introduction

1D Edge Detection (also called 1D Measurement) is a classic technique of machine vision where
the information about image is extracted from one-dimensional profiles of image brightness. As we
will see, it can be used for measurements as well as for positioning of the inspected objects.

Main advantages of this technique include sub-pixel precision and high performance.

Concept

The 1D Edge Detection technique is based on an observation that any edge in the image corresponds to a rapid brightness change in the direction
perpendicular to that edge. Therefore, to detect the image edges we can scan the image along a path and look for the places of significant change of
intensity in the extracted brightness profile.

The computation proceeds in the following steps:

1. Profile extraction — firstly the profile of brightness along the given path is extracted. Usually the profile is smoothed to remove the noise.

2. Edge extraction — the points of significant change of profile brightness are identified as edge points — points where perpendicular edges
intersect the scan line.

3. Post-processing — the final results are computed using one of the available methods. For instance ScanSingleEdge filter will select and
return the strongest of the extracted edges, while ScanMultipleEdges filter will return all of them.

Example

Brightness profile is differentiated. Notice four peaks of the profile derivative which correspond to four prominent image edges intersecting the scan
line. Finally the peaks stronger than some selected value (here minimal strength is set to 5) are identified as edge points.

Filter Toolset

Basic toolset for the 1D Edge Detection-based techniques scanning for edges consists of 9 filters each of which runs a single scan along the given
path (inScanPath). The filters differ on the structure of interest (edges / ridges / stripes (edge pairs)) and its cardinality (one / any fixed number /
unknown number).

https://docs.fab-image.com/5.3/fil/functions/RegionRelations/ClassifyRegions.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleEdges.html

Edges

ScanSingleEdge
. inlmage outEdge . Point
gmglf inScanPath | outEdge . Magnitude
esult inScanPathAlignment out Brightness Profile
outAlignedScanPath out ResponseProfile
S ipleEdges
. inlmage outEdges. Point
|\Rl|u|tlll)'|:e inScanPath N out Edges. Magnitude
esults inScanPathAlignment out Brightness Profile
outAligned ScanPath out ResponseProfile
Fixed : ScanExactlyNEdges :
N " inlmage outEdges.Point
uOf r inScanPath .- out Edges.Magnitude
inScanPathAlignment out Brightness Profile
Results outAlignedScanPath out ResponseProfile
Stripes
ScanSingleStripe
. inimage oLt Stipe Width
Single inScanPath
Result inScanPathAlignment r"" out Brightness Profile
outStripe .
outAlignedScanPath outResponseProfie
S ipleStripes
. inimage outStripes. Width
Multiple inScanPath
Results inScanPathAlignment b out Brightness Profile
outStripes .
outAlignedScanPath outResponseProfile
ScanExactlyNStripes
Fixed inimage outStripes. Width
Number inScanPath
of inScanPathAlignment ek out Brightness Profile
Results |outStripes -
outAlignedScanPath outResponseProfie
Ridges
ScanSingleRidge
. inlmage out Ridge . Point
gmgllet inScanPath LA~ outRidge. Magnitude
esul inScanPathAlignment A9 out Brightness Profile
outAlignedScanPath out ResponseProfile
ScanMultipleRid
. inlmage outRidges. Point
I\R’IUItIFI)Ie inScanPath AN outRidges. Magnitude
esults inScanPathAlignment L out Brightness Profile
outAlignedScanPath outResponseProfile
Fixed : ScanExactlyNRidges : :
N " inlmage outRidges. Point
uof r inScanPath AL S outRidges. Magnitude
inScanPathAlignment L out Brightness Profile
Results outAlignedScanPath out ResponseProfile

Note that in Fablmage Library there is the CreateScanMap function that has to be used before a usage of any other 1D Edge Detection function.
The special function creates a scan map, which is passed as an input to other functions considerably speeding up the computations.

Parameters
Profile Extraction

In each of the nine filters the brightness profile is extracted in exactly the same way. The stripe of
pixels along inScanPath of width inScanWidth is traversed and the pixel values across the path are
accumulated to form one-dimensional profile. In the picture on the right the stripe of processed pixels
is marked in orange, while inScanPath is marked in red.

The extracted profile is smoothed using Gaussian smoothing with standard deviation of
inSmoothingStdDev. This parameter is important for the robustness of the computation - we
should pick the value that is high enough to eliminate noise that could introduce false / irrelevant
extrema to the profile derivative, but low enough to preserve the actual edges we are to detect.

The inSmoothingStdDev parameter should be adjusted through interactive experimentation using outBrightnessProfile output, as demonstrated
below.

Too lowinSmoothingStdDev - too much Appropriate inSmoothingStdDev - low noise, Too high inSmoothingStdDev - significant
noise significant edges are preserved edges are attenuated

Edge Extraction

After the brightness profile is extracted and refined, the derivative of the profile is computed and its
local extrema of magnitude at least inMinMagnitude are identified as edge points. The
inMinMagnitude parameter should be adjusted using the outResponseProfile output.

The picture on the right depicts an example outResponseProfile profile. In this case the significant
extrema vary in magnitude from 11 to 13, while the magnitude of other extrema is lower than 3.
Therefore any inMinMagnitude value in range (4, 10) would be appropriate.

Edge Transition

Filters being discussed are capable of filtering the edges depending on the kind of transition they represent - that is, depending on whether the
intensity changes from bright to dark, or from dark to bright. The filters detecting individual edges apply the same condition defined using the
inTransition parameter to each edge (possible choices are bright-to-dark, dark-to-bright and any).

inTransition = Any inTransition = BrightToDark inTransition = Dark ToBright

Stripe Intensity

The filters detecting stripes expect the edges to alternate in their characteristics. The parameter inlntensity defines whether each stripe should
bound the area that is brighter, or darker than the surrounding space.

inintensity = Dark inintensity = Bright

Case Study: Blades

Assume we want to count the blades of a circular saw

from the picture. a

. . . . outimage "& inFile
We will solve this problem running a single 1D Edge
Detection scan along a circular path intersecting the
blades, and therefore we need to produce appropriate
circular path. For that we will use a straightforward inCircle)
CreateCirclePath filter. The built-in editor wil allow us to outPath ¢ ShowlHide Ports nPointCount
point & click the required inCircle parameter.
The next step will be to pick a suitable measuring filter. mli=as diagBrightnessProfile
Because the path will alternate between dark blades and |inScanPath g diagResponseProfile
white background, we will use a filter that is capable of inScanPathAlignment* b
measuring stripes. As we do not now how many blades outStripes] LS
there are on the image (that is what we need to compute), outhlignedScanPath ¢ ? outStripes Magnitude]]

the ScanMultipleStripes filter will be a perfect choice.

https://docs.fab-image.com/5.3/fil/functions/PathBasics/CreateCirclePath.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanMultipleStripes.html

We expect the measuring filter to identify each blade as a single stripe (or each space between blades, depending on our selection of inintensity),
therefore all we need to do to compute the number of blades is to read the value of the outStripes.Count property output of the measuring filter.

The program solves the problem as expected (perhaps after increasing the inSmoothingStdDev from default of 0.6 to bigger value of 1.0 or 2.0)
and detects all 30 blades of the saw.

1D Edge Detection — Subpixel Precision

Introduction

One of the key strengths of the 1D Edge Detection tools is their ability do detect edges with precision higher than the pixel grid. This is possible,
because the values of the derivative profile (of pixel values) can be interpolated and its maxima can be found analytically.

Example: Parabola Fitting
Let us consider a sample profile of pixel values corresponding to an edge (red):

inProfile (+1) 4 x

Sample edge profile (red) and its derivative (green). Please note, that the derivative is shifted by 0.5.

The steepest segment is between points 4.0 and 5.0, which corresponds to the maximum of the derivative (green) at 4.5. Without the subpixel
precision the edge would be found at this point.

It is, however, possible to consider information about the values of the neighbouring profile points to extract the edge location with higher precision.
The simplest method is to fit a parabola to three consecutive points of the derivative profile:

inProfile (+1) 4 F %

Fitting a parabola to three consecutive points.

Now, the edge point we are looking for can be taken from the maximum of the parabola. In this case it will be 4.363, which is already a subpixel-
precise result. This precision is still not very high, however. We know it from an experiment — this particular profile, which we are considering in this
example, has been created from a perfect gaussian edge located at the point 430 and downsampled 100 times to simulate a camera looking at an
edge at the point 4.3. The error that we got, is 0.063 px. From other experiments we know that in the worst case it can be up to 1/6 px.

Advanced: Methods Available in Fablmage

More advanced methods can be used that consider not three, but four consecutive points and which employ additional techniques to assure the
highest precision in presence of noise and other practical edge distortions. In Fablmage Studio they are available in a form of 3 different profile
interpolation methods:

e Linear —the simplest method that results in pixel-precise results,

e Quadratic3 — an improved fitting of parabola to 3 consecutive points,

e Quadratic4 — an advanced method that fits parabola to 4 consecutive points.
The precision of these methods on perfect gaussian edges is respectively: 1/2 px, 1/6 px and 1/23 px. It has to be added, however, that the

Quadratic4 method differs significantly in its performance on edges which are only slightly blurred — when the image quality is close to perfect, the
precision can be even higher than 1/50 px.

Shape Fitting

Introduction

Shape Fitting is a machine vision technique that allows for precise detection of objects whose
shapes and rough positions are known in advance. It is most often used in measurement
applications for establishing line segments, circles, arcs and paths defining the shape that is to be
measured.

As this technique is derived from 1D Edge Detection, its key advantages are similar — including sub-
pixel precision and high performance.

Concept

The main idea standing behind Shape Fitting is that a continuous object (such as a circle, an arc or a segment) can be determined using a finite set
of points belonging to it. These points are computed by means of appropriate 10 Edge Detection filters and are then combined together into a single
higher-level result.

Thus, a single Shape Fitting filter's work consists of the following steps:

1. Scan segments preparation — a series of segments is prepared. The number, length and orientations of the segments are computed from
the filter's parameters.

2. Points extraction — points that should belong to the object being fitted are extracted using (internally) a proper 1D Edge Detection filter (e.g.
ScanSingleEdge in FitCircleToEdges) along each of the scan segments as the scan path.

3. Object fitting — the final result is computed with the use of a technique that allows fitting an object to a set of points. In this step, a filter from
Geometry 2D Fitting is internally used (e.g. FitCircleToPoints in FitCircleToEdges). An exception to the rule is path fitting. No Geometry 2D
Fitting filter is needed there, because the found points serve themselves as the output path characteristic points.

The scan segments are created according to ScanSingleEdge (or another proper 1D Edge A segment is fitted to the obtained points.
the fitting field and other parameters (e.g. Detection filter) is performed.
inScanCount).

The scan segments are created according to ScanSingleEdge (or another proper 1D Edge A segment is fitted to the obtained points.
the fitting field and other parameters (e.g. Detection filter) is performed.
inScanCount).
Toolset

The typical usage of the shape fitting method encompasses two distinct functions. One of the CreateObjectFittingMap functions (e.g.
CreateCircleFittingMap) has to be used before any other Shape Fitting function. The special functions create a fitting map consisting of the scan
segments. The fitting map is then passed as an input to other functions and, because it generally must be created only once for a whole series of
fitting, this strategy speeds up the computations considerably. However, the fitting map must be created before every fitting when
inFittingFieldAlignment parameter of the Create ObjectFittingMap function is not Nil.

A sample program is shown below:

https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/FitCircleToPoints.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/index.html

// Precompute CircleFittingMap before loop.
fil::CreateCircleFittingMap

(

sampleImage,

CircleFittingField (expectedCircle, 20.0f),

NIL,

10,

1,

SamplingParams (InterpolationMethod: :Bilinear, 1.0f, ftl::NIL),
circleFittingMap

)i

while (true)

{

Image image;
ftl::Conditional<fil::Circle2D> outCircle;

GetImageFromCamera (image); // Get images from a camera.

fil::FitCircleToEdges // Perform fitting.
(

image,

circleFittingMap,

EdgeScanParams () ,

Selection::Best,

NIL,

0.1f,

CircleFittingMethod: :AlgebraicPratt,
NIL,

outCircle

)i

if (outCircle != NIL)
{
// Process results.
}

}

Parameters

Because of the internal use of filters and

filters, all parameters known from them are also present in
filters interfaces.

Beside these, there are also a few parameters specific to the subject of shape fitting. The inScanCount parameter controls the number of the scan
segments. However, not all of the scans have to succeed in order to regard the whole fitting process as being successful. The
inMaxincompleteness parameter determines what fraction of the scans may fail.

performed on the sample image with inMaxincompleteness = 0.25. Although two scans have ended in failure, the circle has been
fitted successfully.

The path fitting functions have some additional parameters, which help to control the output path shape. These parameters are:

¢ inMaxDeviationDelta — it defines the maximal allowed difference between deviations of consecutive points of the output path from the
corresponding input path points; if the difference between deviations is greater, the point is considered to be not found at all.

inMaxinterpolationLength — if some of the scans fail or if some of found points are classified to be wrong according to another control
parameters (e.g. inMaxDeviationDelta), output path points corresponding to them are interpolated depending on points in their nearest
vicinity. No more than inMaxinterpolationLength consecutive points can be interpolated, and if there exists a longer series of points that

would have to be interpolated, the fitting is considered to be unsuccessful. The exception to this behavior are points which were not found on
both ends of the input path. Those are not part of the result at all.

performed on the sample image with inMaxDeviationDelta = 2 and inMaxInterpolationLength = 3. Blue points are the points that
were interpolated. If inMaxinterpolationLength value was less than 2, the fitting would have failed.

Template Matching

Introduction

https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/index.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToEdges.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitPathToEdges.html

Template Matching is a high-level machine vision technique that identifies the parts on an image that

match a predefined template. Advanced template matching algorithms allow to find occurrences of é @
the template regardless of their orientation and local brightness.

Template Matching techniques are flexible and relatively straightforward to use, which makes them @
one of the most popular methods of object localization. Their applicability is limited mostly by the

2®

available computational power, as identification of big and complex templates can be time-
consuming.

Template Matching techniques are expected to address the following need: provided a reference image of an object (the template image) and an
image to be inspected (the input image) we want to identify all input image locations at which the object from the template image is present.
Depending on the specific problem at hand, we may (or may not) want to identify the rotated or scaled occurrences.

q

©®

Concept

We will start with a demonstration of a naive Template Matching method, which is insufficient for real-life applications, but illustrates the core concept
from which the actual Template Matching algorithms stem from. After that we will explain how this method is enhanced and extended in advanced
Grayscale-based Matching and Edge-based Matching routines.

Naive Template Matching

Imagine that we are going to inspect an image of a plug and our goal is to find its pins. We are provided with a template image representing the
reference object we are looking for and the input image to be inspected.

Template image Input image

We will perform the actual search in a rather straightforward way — we will position the template over the image at every possible location, and each
time we will compute some numeric measure of similarity between the template and the image segment it currently overlaps with. Finally we will
identify the positions that yield the best similarity measures as the probable template occurrences.

Image Correlation
One of the subproblems that occur in the specification above is calculating the similarity measure of the aligned template image and the overlapped
segment of the input image, which is equivalent to calculating a similarity measure of two images of equal dimensions. This is a classical task, and a

numeric measure of image similarity is usually called image correlation.

Cross-Correlation

The fundamental method of calculating the image correlation is so called cross-correlation, which eaagédlly is a dimgge2um oQr@ssigorrelation
multiplications of corresponding pixel values of the images.

Though we may notice that the correlation value indeed seems to reflect the similarity of the im agngg'c!)mpm-correlati%%‘lr%gggd is far
from being robust. Its main drawback is that it is biased by changes in global brightness of the images - brightening of an image may skgt—rocket its
cross-correlation with another image, even if the second image is not at all similar. — EE— 23316890

[+ 1 K 1 24715810
Cross-Correlation(Imagel, Image2) = Z Imagel(z,y) x Image2(z,y)
.Y
Normalized Cross-Correlation
Normalized cross-correlation is an enhanced version of the classic cross-correlation method that Image1 Image2 NCC

introduces two improvements over the original one:

o The results are invariant to the global brightness changes, i.e. consistent brightening or darkening of O e 0417
either image has no effect on the result (this is accomplished by subtracting the mean image
brightness from each pixel value). e e 0583

o The final correlation value is scaled to [-1, 1] range, so that NCC of two identical images equals 1.0,
while NCC of an image and its negation equals -1.0.

[« 1 kK] 0844

NCC(Imagel, Image2) = Z(Imagel(:v. y) — Imagel) x (Image2(z,y) — Image2)

Y

J\‘TGH T

Template Correlation Image

Let us get back to the problem at hand. Having introduced the Normalized Cross-Correlation - robust measure of image similarity - we are now able
to determine how well the template fits in each of the possible positions. We may represent the results in a form of an image, where brightness of
each pixels represents the NCC value of the template positioned over this pixel (black color representing the minimal correlation of -1.0, white color
representing the maximal correlation of 1.0).

Template image Input image Template correlation image

Identification of Matches

All that needs to be done at this point is to decide which points of the template correlation image are good enough to be considered actual matches.
Usually we identify as matches the positions that (simultaneously) represent the template correlation:

o stronger that some predefined threshold value (i.e stronger that 0.5)
o locally maximal (stronger that the template correlation in the neighboring pixels)

Areas of template correlation above 0.75 Points of locally maximal template correlation Points of locally maximal template correlation
above 0.75

Summary

It is quite easy to express the described method in Fablmage Studio - we will need just two built-
in filters. We will compute the template correlation image using the ImageCorrelationimage filter,
and then identify the matches using ImagelocallViaxima - we just need to set the inMinValue
parameter that will cut-off the weak local maxima from the results, as discussed in previous
section.

Though the introduced technique was sufficient to solve the problem being considered, we may
notice its important drawbacks:

o Template occurrences have to preserve the orientation of the reference template image.

o The method is inefficient, as calculating the template correlation image for medium to large images is time consuming.
In the next sections we will discuss how these issues are being addressed in advanced template matching techniques: Grayscale-based Matching
and Edge-based Matching.
Grayscale-based Matching, Edge-based Matching

Grayscale-based Matching is an advanced Template Matching algorithm that extends the original idea of correlation-based template detection
enhancing its efficiency and allowing to search for template occurrences regardless of its orientation. Edge-based Matching enhances this method
even more by limiting the computation to the object edge-areas.

In this section we will describe the intrinsic details of both algorithms. In the next section (Filter toolset) we will explain how to use these techniques
in Fabimage Studio.

Image Pyramid

Image Pyramid is a series of images, each image being a result of downsampling (scaling down, by the factor of two in this case) of the previous
element.

Level 0 (input image) Level 1 Level 2

Pyramid Processing

Image pyramids can be applied to enhance the efficiency of the correlation-based template detection. The important observation is that the template
depicted in the reference image usually is still discernible after significant downsampling of the image (though, naturally, fine details are lost in the
process). Therefore we can identify match candidates in the downsampled (and therefore much faster to process) image on the highest level of our
pyramid, and then repeat the search on the lower levels of the pyramid, each time considering only the template positions that scored high on the

previous level.

At each level of the pyramid we will need appropriately downsampled picture of the reference template, i.e. both input image pyramid and template
image pyramid should be computed.

https://docs.fab-image.com/5.3/fil/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageFeatures/ImageLocalMaxima.html

| s |

Level 0 (template reference image) Level 1

Grayscale-based Matching

Level 2

Although in some of the applications the orientation of the objects is uniform and fixed (as we have seen in the plug example), it is often the case that
the objects that are to be detected appear rotated. In Template Matching algorithms the classic pyramid search is adapted to allow multi-angle

matching, i.e. identification of rotated instances of the template.

This is achieved by computing not just one template image pyramid, but a set of pyramids - one for each possible rotation of the template. During the
pyramid search on the input image the algorithm identifies the pairs (template position, template orientation) rather than sole template positions.
Similarly to the original schema, on each level of the search the algorithm verifies only those (position, orientation) pairs that scored well on the

previous level (i.e. seemed to match the template in the image of lower resolution).

3 I\
$ | @

Template image Input image

) eP®m

& 3 S 9@@@9

& ® NPH

Results of multi-angle matching

The technique of pyramid matching together with muiti-angle search constitute the Grayscale-based Template Matching method.

Edge-based Matching

Edge-based Matching enhances the previously discussed Grayscale-based Matching using one crucial observation - that the shape of any object is

defined mainly by the shape of its edges. Therefore, instead of matching of the whole template, we could extract its edges and match only the nearby
pixels, thus avoiding some unnecessary computations. In common applications the achieved speed-up is usually significant.

Matching object edges instead of an object as a whole requires slight
modification of the original pyramid matching method: imagine we are matching
an object of uniform color positioned over uniform background. All of object
edge pixels would have the same intensity and the original algorithm would
match the object anywhere wherever there is large enough blob of the
appropriate color, and this is clearly not what we want to achieve. To resolve
this problem, in Edge-based Matching it is the gradient direction (represented
as a color in HSV space for the illustrative purposes) of the edge pixels, not
their intensity, that is matched.

Filter Toolset

Grayscale-based Matching:

Edge-based Matching:

Different kinds of template pyramids used in Template Matching algorithms.

Fablmage Studio provides a set of filters implementing both Grayscale-based
Matching and Edge-based Matching. For the list of the filters see

filters.

As the template image has to be preprocessed before the pyramid matching (we need to calculate the template image pyramids for all possible

rotations and scales), the algorithms are split into two parts:

« Model Creation - in this step the template image pyramids are calculated and the results are stored in a model - atomic object representing

all the data needed to run the pyramid matching.

o Matching - in this step the template model is used to match the template in the input image.

Such an organization of the processing makes it possible to compute the model once and reuse it multiple times.

Available Filters

For both Template Matching methods two filters are provided, one for each step of the algorithm.

Grayscale-based Matching

Cr

inlmage

inTemplate Region
diag Template Pyramid
outGrayModel

Model
Creation:

Loc

teMultipleObjects_NCC

inlmage

inSearchRegion

inSearch RegionAlignment
diaglmage Pyramid
outObjects
outObjects.Match
outObjects. Alignment
outAligned Search Region

diagScores

Matching:

outObjects.Score

Please note that the use of and

Edge-based Matching

CreateEdgeModel2

inlmage
inTemplateRegion
diagEdgePyramid
out EdgeModel
outEdges

Locat:

ItipleObjects_Edges2

inlmage

inSearchRegion
inSearchRegionAlignment
diagEdge Pyramid
outObjects
outObjects.Match
outObjects. Alignment
outAlignedSearch Region

diagScores

outObjects. Score

filters will only be necessary in more advanced applications. Otherwise it is

enough to use a single filter of the Matching step and create the model/ by setting the inGrayModel or inEdgeModel parameter of the filter. The

and filters are preferred over
they are newer, more advanced versions with more capabilities.

and because

https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/index.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/LocateMultipleObjects_Edges1.html

The main challenge of applying the Template Matching technique lies in careful adjustment of filter parameters, rather than designing the program
structure.

Advanced Application Schema

There are several kinds of advanced applications, for which the interactive GUI for Template Matching is not enough and the user needs to use the
CreateGrayModel or CreateEdgeModel?2 filter directly. For example:

1. When creating the model requires non-trivial image preprocessing.

2. When we need an entire array of models created automatically from a set of images.

3. When the end user should be able to define his own templates in the runtime application (e.g. by making a selection on an input image).
Schema 1: Model Creation in a Separate Program
For the cases 1 and 2 it is advisable to implement model creation in a separate Task macrofilter, save the model to an FIDATA file and then link that

file to the input of the matching filter in the main program:

Model Creation:

Program Editor - Design - B X
& Create_Model [T0]

. CreateEdgeModel

eObject<EdgeModel>?

Macrofilter Outputs

Main Program:

diagScores[]?

inSearchRegionAlignment” outObject Point?

inEdgeModel
diagEdgePyramid]] outObject. Score?
outObject Match?

outObject. Alignment?

outPyramidHeight

When this program is ready, you can run the "CreateModel" task as a program at any time you want to recreate the model. The link to the data file on
the input of the matching filter does not need any modifications then, because this is just a link and what is being changed is only the file on disk.

https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateGrayModel.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html

Schema 2: Dynamic Model Creation

For the case 3, when the model has to be created dynamically, both the model creating filter and the matching filter have to be in the same task. The
former, however, should be executed conditionally, when a respective HMI event is raised (e.g. the user clicks an ImpulseButton or makes some
mouse action in a VideoBox). For representing the model, a register of EdgeModel2? type should be used, that will store the latest model. Here is an
example realization with the model being created from a predefined box on an input image when a button is clicked in the HMI:

Program Editor - Design v 3 X

E@wnelm LszQle-+[ta

ACQUIRE

n an sction from HMI

2. CreateEdgeModel?

Use the new model or the previous one
3. Me
7

Model Creation

Height of the Pyramid

The inMaxPyramidLevel parameter determines the number of levels of the pyramid matching and should be set to the largest number for which the
template is still recognizable on the highest pyramid level. This value should be selected through interactive experimentation using the diagnostic
output diagTemplatePyramid (Grayscale-based Matching) or diagEdgePyramid (Edge-based Matching).

The inMinPyramidLevel parameter determines the lowest pyramid level that is generated during creation phase and the lowest pyramid level that
the occurrences are tracked to during location phase. If the parameter is set to lower value in location than in creation, the missing levels are
generated dynamically by the locating filter. This approach leads to much faster creation, but a bit slower location.

In the following example the inMaxPyramidLevel value of 4 would be too high (for both methods), as the structure of the template is entirely lost on
this level of the pyramid. Also the value of 3 seems a bit excessive (especially in case of Edge-based Matching) while the value of 2 would definitely
be a safe choice.

Level 0 Level 1 Level 2 Level 3 Level 4

Grayscale-based
Matching
(diagTemplatePyramid):

Edge-based Matching
(diagEdgePyramid):

Angle Range

The inMinAngle, inMaxAngle parameters determine the range of template orientations that will be considered in the matching process. For
instance (values in brackets represent the pairs of inMinAngle, inMaxAngle values):

e (-180.0, 180.0): all rotations are considered (default value)

e (-15.0, 15.0): the template occurrences are allowed to deviate from the reference template orientation at most by 15.0 degrees (in each
direction)

e (0.0, 0.0): the template occurrences are expected to preserve the reference template orientation

Wide range of possible orientations introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit
the range whenever possible, especially if different scales are also involved. The number of rotations created can be further manipulated with
inAnglePrecision parameter. Decreasing it results in smaller models and smaller execution times, but can also lead to objects that are slightly less
accurate.

Scale Range

The inMinScale, inMaxScale parameters determine the range of template scales that will be considered in the matching process. It enables
locating objects that are slightly smaller or bigger than the object used during model creation.

Wide range of possible scales introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit the
range whenever possible. The number of scales created can be further manipulated with inScalePrecision parameter. Decreasing it results in
smaller models and smaller execution times, but can also lead to objects that are slightly less accurate.

Edge Detection Settings (only Edge-based Matching)

The inEdgeThreshold, inEdgeHysteresis parameters of filter determine the settings of the hysteresis thresholding used to
detect edges in the template image. The lower the inEdgeThreshold value, the more edges will be detected in the template image. These
parameters should be set so that all the significant edges of the template are detected and the amount of redundant edges (noise) in the result is as
limited as possible. Similarly to the pyramid height, edge detection thresholds should be selected through interactive experimentation using the
outEdges output and the diagnostic output diagEdgePyramid - this time we need to look only at the picture at the lowest level.

(15.0, 30.0) - excessive amount of noise (40.0, 60.0) - OK (60.0, 70.0) - significant edges lost

The filter will not allow to create a model in which no edges were detected at the top of the pyramid (which means not only some
significant edges were lost, but all of them), yielding an error in such case. Whenever that happens, the height of the pyramid, or the edge
thresholds, or both, should be reduced.

Matching
The inMinScore parameter determines how permissive the algorithm will be in verification of the match candidates - the higher the value the less

results will be returned. This parameter should be set through interactive experimentation to a value low enough to assure that all correct matches
will be returned, but not much lower, as too low value slows the algorithm down and may cause false matches to appear in the results.

Tips and Best Practices
How to Select a Method?

For vast majority of applications the Edge-based Matching method will be both more robust and more efficient than Grayscale-based Matching.
The latter should be considered only if the template being considered has smooth color transition areas that are not defined by discernible edges, but
still should be matched.

How to even further upgrade the results of Edge-based Matching?

You can use filter or filter to fine-tune the results. A great example of usage is presented
in the filter.

Using Local Coordinate Systems

Introduction

Local coordinate systems provide a convenient means for inspecting objects that may appear at different positions on the input image. Instead of
denoting coordinates of geometrical primitives in the absolute coordinate system of the image, local coordinate systems make it possible to use
coordinates local to the object being inspected. In an initial step of the program the object is located and a local coordinate system is set accordingly.
Other tools can then be configured to work within this coordinate system, and this makes them independent of the object translation, rotation and
scale.

Two most important notions here are:

e CoordinateSystem2D — a structure consisting of Origin (Point2D), Angle (real number) and Scale (real number), defining a relative Cartesian
coordinate system with its point (0, 0) located at the Origin point of the parent coordinate system (usually an image).

e Alignment — the process of transforming geometrical primitives from a local coordinate system to the coordinates of an image (absolute), or
data defining such transformation. An alignment is usually represented with the Coordinate System2D data type.

Creating a Local Coordinate System
There are two standard ways of setting a local coordinate system:

1. With filters it is straightforward as the filters have outObjectAlignment(s) outputs, which provide local coordinate systems
of the detected objects.

2. With one of the functions, which allow for creating local coordinate systems manually at any location, and with any
rotation and scale. In most typical scenarios of this kind, the objects are located with , or tools.

https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/EnhanceMultipleObjectMatches.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/EnhanceSingleObjectMatch.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/index.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DConstructions/index.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/ShapeFitting.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html

Using a Local Coordinate System

After a local coordinate system is created it can be used in the subsequent image analysis tools. The high level tools available in Fabimage Studio
have an inAlignment (or similar) input, which just needs to be connected to the port of the created local coordinate system. At this point, you should
first run the program at least to the point where the coordinate system is computed, and then the geometrical primitives you will be defining on other
inputs, will be automatically aligned with the position of the inspected object.

Example 1: Alignment from Template Matching

To use object alignment from a filter, you need to connect the Alignment ports:

inDirectony

outlmage A outFdePath
cutFieName |

inimage diagSeores] |7 |

| inSearchRegion” §

| disgEdgePyramid[] e i

| outObject Match? outObject Score?

'_outDb;e-m Abgnment?

| outObjectEdges]]? outPyramidHesght |
imede diagBrightnessProfies 17 |
= inFattingField Alignment” 3
| dizgSeanSegments] |7 O disgResponseProfie] 7 |
| cutCircle? |
[cutAignedFitingField? outEdges Point?[7 |

Template Matching and an aligned circle fitting.

When you execute the template matching filter and enter the editor of the inFittingField input of the filter, you will have the local
coordinate system already selected (you can also select it manually) and the primitive you create will have relative coordinates:

Reference image:

L) No image

) ﬁ Scale 3% - E} a i—] j

OK Cance!

Editing an expected circle in a local coordinate system.

During program execution this geometrical primitive will be automatically aligned with the object position. Moreover, you will be able to adjust the input
primitive in the context of any input image, because they will be always displayed aligned. Here are example results:

https://docs.fab-image.com/5.3/fil/functions/TemplateMatching/index.html
https://docs.fab-image.com/5.3/fil/functions/ShapeFitting/FitCircleToEdges.html

Example 2: Alignment from Blob Analysis

In many applications objects can be located with methods simpler and faster than Template Matching — like 1D Edge Detection, Shape Fitting or Blob
Analysis. In the following example we will show how to create a local coordinate system from two blobs:

Two holes clearly define the object location.

In the first step we detect the blobs (see also: Blob Analysis) and their centers:

The result of blob detection.

Filters detecting blobs and their centers.

In the second step we sort the centers by the X coordinate and create a coordinate system "from segment" defined by the two points
(CreateCoordinateSystemFromSegment). The segment defines both the origin and the orientation. Having this coordinate system ready, we connect
it to the inScanPathAlignment input of ScanExactlyNRidges, which will measure the distance between two insets. The measurement will work
correctly irrespective of the object position (mind the expanded structure inputs and outputs):

https://docs.fab-image.com/5.3/fil/machine_vision_guide/1DEdgeDetection.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/ShapeFitting.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DConstructions/CreateCoordinateSystemFromSegment.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanExactlyNRidges.html

outMassCenter]]

inRegion

outMassCenter X[]

outElementd? 3
outEIemeni‘l?- |

inSegmentPoint] =
inSegment Point2
?

diagBiightnessProfile?
diagResponseProfile?

~ inScanPathAlignment” M [7 oulRidges Point[]? § Created local coordinate system and an aligned measurement.
outAlignedScanPath? b ouRidges Magnitudef |?

Filters creating a coordinate systems and performing an aligned
measurement.

Manual Alignment

In some cases the filter you will need to use with a local coordinate system will have no appropriate inAlignment input. In such cases the solution is
to transform the primitive manually with filters like AlignPoint, AlignCircle, AlignRectangle. These filters accept a geometrical primitive defined in a
local coordinate system, and the coordinate system itself, and return the same primitive, but with absolute coordinates, i.e. aligned to the coordinate
system of an image.

Avery common case is with ports of type Region, which is pixel-precise and, while allowing for creation of arbitrary shapes, cannot be directly
transformed. In such cases it is advisable to use the CreateRectangleRegion filter and define the region-of-interest at inRectangle. The filter, having
also the inRectangleAlignment input connected, will return a region properly aligned with the related object position. Some ready-made tools, e.g.
CheckPresence_Intensity, use this approach internally.

Not Mixing Local Coordinate Systems

It is important to keep in mind that geometrical primitives that appear in different places of a program may belong to different coordinate systems.
When such different objects are combined together (e.g. with a filter like SegmentSegmentintersection) or placed on a single data preview, the
results will be meaningless or at least confusing. Thus, only objects belonging to the same coordinate system should be combined. In particular,
when placing primitives on a preview on top of an image, only aligned primitives (with absolute coordinates) should be used.

As a general rule, image analysis filters of Fablmage Studio accept primitives in local coordinate systems on inputs, but outputs are always aligned
(i.e. in the absolute coordinate system). In particular, many filters that align input primitives internally also have outputs that contain the input primitive
transformed to the absolute coordinate system. For example, the ScanSingleEdge filters has a inScanPath input defined in a local coordinate
system and a corresponding outAlignedScanPath output defined in the absolute coordinate system:

4. ScanEdges: Single
inlmage » diagBrightnessProfile
inScanPath | , diagResponseProfile
inScanPamAIignment*> I outEdge Point?
outAlignedScanPath outEdge.Magnitude?

The ScanSingleEdge filter with a pair of ports: inScanPath and outAlignedScanPath, belonging to different coordinate systems.

Optical Character Recognition

Introduction

Optical Character Recognition (OCR) is a machine vision task consisting in extracting textual
information from images.

State of the art techniques for OCR offer high accuracy of text recognition and invulnerability to medium gri
applicable for recognition of characters made using dot matrix printers. This technology gives satisfactol
characters.

Efficiency of the recognition process mostly depends on the quality of text segmentation results. Mos

provided set of recognition models. In other cases a new recognition model can be easily
prepared.
S e,

Concept Result of data extraction using OCR.

OCR technology is widely used for automatic data reading from various sources. It is
especially used to gather data from documents and printed labels.

In the first part of this manual usage of high level filters will be described.

The second part of this manual shows how to use standard OCR models provided with Fablmage Studio. It also shows how to prepare an image to
get best possible results of recognition.

The third part describes the process of preparing and training OCR models.

The last part presents an example program that reads text from images.

Using high level Optical Character Recognition filters

Fablmage Studio offers a convenient way to extract a text region from an image and then read it using a trained OCR classifier.

https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/AlignPoint.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/AlignCircle.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DSpatialTransforms/AlignRectangle.html
https://docs.fab-image.com/5.3/fil/datatypes/Region.html
https://docs.fab-image.com/5.3/fil/functions/RegionBasics/CreateRectangleRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/CheckPresence_Intensity.html
https://docs.fab-image.com/5.3/fil/functions/Geometry2DIntersections/SegmentSegmentIntersection.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.fab-image.com/5.3/fil/functions/1DEdgeDetection/ScanSingleEdge.html

The typical OCR application consists of the following steps:

1. Find text position — locate the text position using template matching,
2. Extract text — use the filter ExtractText to distinct the text form the background and perform its segmentation,

3. Read text — recognizing the extracted characters with the ReadText filter.

PROCESS
E Ta]
" inDirectory | "images”
— outimage F outFiePath
= cutFleName
LocateSingleObject_Edgesl
Locate text position using a characteristic part of image.
linl
inSearchRegion®
e bl diagSoores] |?
inSearchRegionAlignment”
diagEdg_eF‘yramid[I
diagMatchPyramid]]
outhlgnedSearchRegion
Score?
— outObiect Match? ahtied Saes
outChiect Algnment?
ExtractText?
Use found location to get text regions.
il
——
inRoifkgnment = G|
ﬁagA{g_r!edC_haﬁmﬁs[7
outCH [1?
I ReadText?
$ Perform text reading
inCharacters[] outTextT
|
inOeriodel ~\ outScores| |7

Example OCR application using high level filters.

Details on Optical Character Recognition technique

Reading text from images

In order to achieve the most accurate recognition it is necessary to perform careful text extraction and segmentation. The overall process of
acquiring text from images consists of the following steps:

. Getting text location,

. Extracting text from the background,
. Segmenting text,

. Using prepared OCR models,

. Character recognition,

. Interpreting results,

N o g~ WN =

. Verifying results.

The following sections will introduce methods used to detect and recognize text from images. For better understanding of this guide the reader
should be familiar with basic blob analysis techniques.

Getting text location

In general, text localization tasks can be divided into three cases:

https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/ExtractText.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/ReadText.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/BlobAnalysis.html

1. The location of text is fixed and it is described by boxes called masks. For example, the personal identification card is produced according to
the formal specification. The location of each data field is known. A well calibrated vision system can take images in which the location of the
text is almost constant.

010113

12:345 WARSIAWA | ‘

An example image with text masks.

2. Text location is not fixed, but it is related to a characteristic element on the input images or to a special marker (an optical mark). To get the
location of the text the optical mark has to be found. This can be done with template matching, 1D edge detection or other technique.

3. The location of text is not specified, but characters can be easily separated from the background with image thresholding. The correct
characters can then be found with blob analysis techniques.

Getting text from a bottle cap.

When the text location is specified, the image under analysis must be transformed to make text lines parallel to the X-axis. This can be done with
Rotatelmage, CroplmageToRectangle or ImageAlongPath filters.

Extracting text from the background

A major complication during the process of text extraction may be uneven light. Some techniques like light normalization or edge sharpening can help
in finding characters. The example of light normalization can be found in the example project Examples\Tablets. The presentation of image
sharpening using the Fourier transform can be found in the Examples\Fourier example.

Original image.

Image after light normalization.

ABCDEFGH

Image after low-frequency image damping using the Fourier transform.

Text extraction is based on image binarization techniques. To extract characters, filters like ThresholdToRegion and ThresholdToRegion Dynamic
can be used. In order to avoid recognizing regions which do not include characters, it is advisable to use filters based on blob area.

M

Sample images with uneven light.

https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/RotateImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/ImageAlongPath.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Dynamic.html

Results of ThresholdToRegion and Threshold ToRegion _Dynamic on images with
uneven light.

At this point the extracted text region is prepared for segmentation.
Segmenting text

Text region segmentation is a process of splitting a region into lines and individual characters. The recognition step is only possible if each region
contains a single character.

Firstly, if there are multiple lines of text, separation into lines must be performed. If the text orientation is horizontal, simple region dilation can be used
followed by splitting the region into blobs. In other cases the text must be transformed, so that the lines become horizontal.

The process of splitting text into lines using region morphology filters.

When text text lines are separated, each line must be split into individual characters. In a case when characters are not made of diacritic marks and
characters can be separated well, the filter SplitRegionintoBlobs can be used. In other cases the filter SplitRegionintoExactlyNCharacters or
SplitRegionintoMultipleCharacters must be used.

Character segmentation using SplitRegionintoBlobs.

Character segmentation using SplitRegionintoMultipleCharacters.
Next, the extracted characters will be translated from graphical representation to textual representation.
Using prepared OCR models
Standard OCR models are typically located in the disk directory C:\ProgramData\Fablmage\{Fablmage Product Name}\PretrainedFonts.

The table below shows the list of available font models:

https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion.html
https://docs.fab-image.com/5.3/fil/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/SplitRegionIntoExactlyNCharacters.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html
https://docs.fab-image.com/5.3/fil/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html

Font Font Set

name typeface name D aEE
AZ ABCDEFGHIKLMNOPQRSTUVWXYZ.-/
AZ_small abcdefghijkimnopgrstuvwxyz.-/
OCRA monospaced
09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

AZ ABCDEFGHIKLMNOPQRSTUVWXYZ.-/
AZ_small abcdefghijkimnopgrstuvwxyz.-/
OCRB monospaced
09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

MICR monospaced ABCO09 ABC0123456789
AZ ABCDEFGHIKLMNOPQRSTUVWXYZ.-/
AZ_small abcdefghijkimnopgrstuvwxyz.-/

Computer monospaced
09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./

DotMatrix monospaced AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ+-

01234556789./
09 01234556789.+-/
AZ ABCDEFGHIKLMNOPQRSTUVWXYZ.-/
AZ small abcdefghijkimnopgrstuvwxyz.-/
Regular proportional
09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

Character recognition
Fablmage Library offers two types of character classifiers:

1. Classifier based on multi-layer perceptron (MLP).

2. Classifier based on support vector machines (SVM).

Both of the classifiers are stored in the type. To get a text from character regions use the filter, shown on the image
below:
RecognizeCharacters

inCharacterRegions

inOcrModel outCharacters

diagNomalizedCharacters \

diagCharactersBoxes outScares

outCandidates

The first and the most important step is to choose the appropriate character normalization size. The internal classifier recognizes characters using
their normalized form. More information about character normalization process will be provided in the section describing the process of classifier
training.

The character normalization allows to classify characters with different sizes. The parameter inCharacterSize defines the size of a character
before the normalization. When the value is not provided, the size is calculated automatically using the character bounding box.

https://docs.fab-image.com/5.3/fil/datatypes/OcrModel.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/RecognizeCharacters.html

Characters after

. Description
normalization escriptio

Character presentation

Read : EXAMPLE

E| f u D The appropriate character size is
= AVa chosen.

Read:PAQ7PLP

E ::(:‘u =. = The size of character is too small.

L

Read:FTTTTCF

Too much information about a
.MM character is lost because of too large
[size has been selected .
I L
=T

Next, character sorting order must be chosen. The default order is from left to right.

If the input text contains spaced characters, the value of inMinSpaceWidth input must be set. This value indicates the minimal distance between
two characters between which a space will be inserted.

Character recognition provides the following information:

1. the read text as a string (outCharacters),
2. an array of character recognition scores (outScores),

3. an array of recognition candidates for each character (outCandidates).
Interpreting results

The table below shows recognition results for characters extracted from the example image. An unrecognized character is colored in red.

Original Recognized Score Candidates
character character (character and accuracy)
(outCharacters) (outScores) (outCandidates)

E E 1.00 E: 1.00

X X 1.00 X:1.00

A A 1.00 A 1.00

M M 1.00 M: 1.00

P R 0.50 R: 0.90 B: 0.40

L L 1.00 L: 1.00

E E 1.00 E: 1.00

In this example the letter P was not included in the training set. In effect, the OCR model was unable to recognize the representation of the P letter.
The internal classifier was trying to select most similar known character.

Verifying results

After reading result should be check if text follows constraints. It can be done using simple string manipulation.

Preparation of the OCR models

An OCR model consists of an internal statistical tool called a classifier and a set of character data. There are two kinds of classifiers used to
recognize characters. The first classifier type is based on the multilayer perceptron classifier (MLP) and the second one uses support vector
machines (SVM). For further details please refer to the documentation of the VILP_Init and the S\/M_Init filters. Each model must be trained before it
can be used.

The process of OCR model training consists of the following steps:

https://docs.fab-image.com/5.3/fil/functions/MultilayerPerceptron/MLP_Init.html
https://docs.fab-image.com/5.3/fil/functions/SupportVectorMachines/SVM_Init.html

o M 0N~

When these steps are performed, the model is ready to use.
Preparation of the training data set

Each classifier needs character samples in order to begin the training process.

To get the best recognition accuracy, the training character samples should be as

similar as possible to those which will be provided for recognition. There are two A B C D E F G H
possible ways to obtain sample characters: (1) extraction of characters from real

images or (2) generation of artificial characters using computer fonts. Synthetic characters generated by means of a computer font.

In the perfect world the model should be trained using numerous real samples.
However, sometimes it can be difficult to gather enough real character samples. In
this case character samples should be generated by deforming the available
samples. A classifier which was trained on a not big enough data set can focus only
on familiar character samples at the same time failing to recognize slightly modified
characters.

Character samples acquired from a real usage.

Example operations which are used to create new character samples:

1. region rotation (using the filter),
2. shearing ()

3. dilatation and erosion (,),

LY. V. W.V.V.W. V.

The set of character samples deformed by: the region rotation, morphological transforms, shearing and noises.

4. addition of a noise.

Note: Adding too many deformed characters to a training set will increase the training time of a model.

Note: Excessive deformation of character shape can result in classifier inability to recognize the learnt character base. For example: if the training
set contains a C character with too many noises, it can be mistaken for O character. In this case the classifier will be unable to determine the base
of a newly provided character.

Each character sample must be stored in a structure of type . This structure consists of a character region and its textual
representation. To create an array of character samples use the filter.

Selection of normalization size and character features

The character normalization allows for reduction of the amount of data used in the character classification. The other aim of normalization is to
enable the classification process to recognize characters of various sizes.

During normalization each character is resized into a size which was provided during the model initialization. All further classifier operations will be
performed on the resized (normalized) characters.

Various size characters before and after the normalization process.

Selection of too large normalization size will increase training time of the OCR classifier. On the other hand, too low size will result in loss of
important character details. The selected normalization size should be a compromise between classification time and the accuracy of recognition.
For the best results, a character size after normalization should be similar to its size before normalization.

During the normalization process some character details will be lost, e.g. the aspect ratio of a character. In the training process, some additional
information can be added, which can compensate for the information loss in the normalization process. For further information please refer to the
documentation of the filter.

Training of the OCR model

There are two filters used to train each type of an OCR classifier. These filters require parameters which describe the classifier training process.

TrainOcr_MLP TrainOcr_SVM
inCharacterSamples inRandomSeed inCharacterSamples inRandomSeed
diagNomalizedCharacters - diagEmor diagNomalizedCharacters -
outOcrModel out TrainingAccuracy outOcrModel out Training Accuracy
Training of MLP classifier using . Training of SVM classifier using

Saving the training results

After successful classifier training the results should be saved for future use. The function should be used.

Camera Calibration and World Coordinates

https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/RotateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionSpatialTransforms/ShearRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/DilateRegion.html
https://docs.fab-image.com/5.3/fil/functions/RegionMorphology/ErodeRegion.html
https://docs.fab-image.com/5.3/fil/datatypes/CharacterSample.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/MakeCharacterSamples.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.fab-image.com/5.3/fil/functions/OpticalCharacterRecognition/SaveOcrModel.html

Camera Calibration

Camera calibration, also known as camera resectioning, is a process of estimating parameters of a camera model: a set of parameters that
describe the internal geometry of image capture process. Accurate camera calibration is is essential for various applications, such as multi-camera
setups where images relate to each other, removing geometric distortions due to lens imperfections, or precise measurement of real-world
geometric properties (positions, distances, areas, straightness, etc.).

The model to be used is chosen depending on the camera type (e.g. projective camera, telecentric camera, line scan camera) and accuracy
requirements. In a case of a standard projective camera, the model (known as pinhole camera model) consists of focal length, principal point
location and distortion parameters.

Afew distortion model types are supported. The simplest - divisional - supports most use cases and has predictable behaviour even when
calibration data is sparse. Higher order models can be more accurate, however they need a much larger dataset of high quality calibration points,
and are usually needed for achieving high levels of positional accuracy across the whole image - order of magnitude below 0.1 pix. Of course this is
only a rule of thumb, as each lens is different and there are exceptions.

The area scan camera models (pinhole or telecentric) contain only intrinsic camera parameters, and so it does not change with camera
repositioning, rotations, etc. Thanks to that, there is no need for camera calibration in the production environment, the camera can be calibrated
beforehand. As soon as the camera has been assembled with the lens and lens adjustments (zoom/focus/f-stop rings) have been tightly locked, the
calibration images can be taken and camera calibration performed. Of course any modifications to the camera-lens setup void the calibration
parameters, even apparently minor ones such as removing the lens and putting it back on the camera in seemingly the same position.

On the other hand the line scan model contains parameters of whole imaging setup, i.e. camera and a moving element (usually a conveyor belt).
Such approach, in contrast with area scan camera calibration, is necessary as the moving element of line scan camera system is tightly bound
within the image acquisition geometry.

Camera model can be directly used to obtain an undistorted image (an image, which would have been taken by a camera with the same basic
parameters, but without lens distortion present), however for most use cases the camera calibration is just a prerequisite to some other operation.
For example, when camera is used for inspection of planar surfaces (or objects lying on such surface), the camera model is needed to perform a
World Plane calibration (see World Plane - measurements and rectification section below).

In Fablmage Studio user will be prompted by a GUl when a camera calibration is needed to be performed. Alternatively, filters responsible for camera
calibration may be used directly: CalibrateCamera_Pinhole, CalibrateCamera_Telecentric, CalibrateCamera_LineScan.

A set of grid pictures for basic calibration. Note that high accuracy applications require denser grids and higher amount of pictures. Also note
that all grids are perpendicular to the optical axis of the camera, so the focal length won't be calculated by the filter.

World Plane - Measurements and Rectification

Vision systems which are concerned with observation and inspection of planar (flat) surfaces, or objects lying on such surfaces (e.g. conveyor belts)
can take advantage of the image to world plane transform mechanism of Fablmage Studio, which allows for:

o Calculation of real world coordinates from locations on original image. This is crucial, for example, for interoperability with external devices,
such as industrial robots. Suppose a object is detected on the image, and its location needs to be transmitted to the robot. The detected object
location is given in image coordinates, however the robot is operating in real world with different coordinate system. A common coordinate
system is needed, defined by a world plane.

* Image rectification onto the world plane. This is needed when performing image analysis using original image is not feasible (due to high
degree of lens and/or perspective distortion). The results of analysis performed on a rectified image can also be transformed to real-world
coordinates defined by a world plane coordinate system. Another use case is a multi-camera system — rectification of images from all the
cameras onto common world plane gives a simple and well defined relation between those rectified images, which allows for easy
superimposing or mosaic stitching.

The image below shows the image coordinate system. Image coordinates are denoted in pixels, with the origin point (0, 0) corresponding to the top-
left corner of the image. The X axis starts at the left edge of an image and goes towards the right edge. The Y axis starts at the top of the image
towards image bottom. All image pixels have nonnegative coordinates.

https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/CalibrateCamera_LineScan.html

(0, 0)

(512, 512)
Directions and pixel positions in image coordinates.

The world plane is a distinguished flat surface, defined in the real 3D world. It may be arbitrarily placed with respect to the camera. It has a defined
origin position and XY axes.

Images below present the concept of a world plane. First image presents an original image, as captured by a camera that has not been mounted
quite straight above the object of interest. The second image presents a world plane, which has been aligned with the surface on which the object is
present. This allows for either calculation of world coordinates from pixel locations on original image, or image rectification, as shown on the next
images.

Object of interest as captured by an imperfectly positioned camera.

World plane coordinate system superimposed onto the original image.

'>(2r2)

Image to world plane coordinate calculation. Image rectification, with cropping to an area from point (0,0) to (5,5) in world
coordinates.

In order to use the image to world plane transform mechanism of Fablmage Studio, appropriate Ul wizards are supplied:

e For calculation of real world coordinates from locations on original image — use a wizard associated with the inTransforminput of
filter (or other from ImageObjectsToWorldPlane group).

e For image rectification onto the world plane — use a wizard associated with the inRectificationMap input of filter.

Although using Ul wizards is the recommended course of action, the most complicated use cases may need a direct use of filters, in such a case
following steps are to be performed:

1. Camera calibration — this step is highly recommended to achieve accurate results, although not strictly necessary (e.g. when lens distortion
errors are insignificant).

2. World plane calibration — the CalibrateWorldPlane_* filters compute a , Which represents image to world plane relation
3. The image to world plane relation then can be used to:

o Calculate of real world coordinates from locations on original image, and vice versa, see X
or similar filters (from ImageObjects ToWorldPlane or WorldPlaneObjectsTolmage groups).

o Perform image rectification onto the world plane, see CreateRectificationMap_* filters.
There are different use cases of world coordinates calculation and image rectification:

e Calculating world coordinates from pixel locations on original image without image rectification. This approach uses transformation output for
example by Calibrate\WWorldPlane_* to calculate real world coordinates with ImageObjects ToWorldPlane_*

e Second scenario is very similar to the first one with the difference of using image rectification. In this case, after performing analysis on an
rectified image (i.e. image remapped by), the locations can be transformed to a common coordinate system given by the world
plane by using the rectified image to world plane relation. It is given by auxiliary output outRectifiedTransform of filter. Notice
that the rectified image to world plane relation is different than original image to world plane relation.

e Last use case is to perform image rectification and rectified image analysis without its features recalculation to real world coordinates.

Example of taking world plane measurements on the rectified image. Left: original image, as captured by a camera, with mild lens distortion.
Right: rectified image with annotated length measurement.

Notes:

o Image to world plane transform is still a valid mechanism for telecentric cameras. Is such a case, the image would be related to world plane by
an affine transform.

e Camera distortion is automatically accounted for in both world coordinate calculations and image rectification.

e The spatial map generated by CreateRectificationMap_* filters can be thought of as a map performing image undistortion followed by a
perspective removal.

Extraction of Calibration Grids

Both camera calibration and image to world plane transform calculation use extracted calibration grids in the form of array of image points with grid
indices, i.e. annotated points.

Note that the real-world coordinates of the grids are 2D, because the relative = coordinate of any point on the flat grid is o.

Fablmage Studio provides extraction filters for a few standard grid formats (see: and

).

https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/ImagePointsToWorldPlane.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/datatypes/RectificationTransform.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/WorldPlanePointToImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/DetectCalibrationGrid_Chessboard.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/DetectCalibrationGrid_Circles.html

Using custom grids requires a custom solution for extracting the image point array. If the custom grid is a rectangular grid, the AnnotateGridPoints
filter may be used to compute annotations for the image points.

Note that the most important factor in achieving high accuracy results is the precision and accuracy of extracted calibration points. The calibration
grids should be as flat and stiff as possible (cardboard is not a proper backing material, thick glass is perfect). Take care of proper conditions when
taking the calibration images: minimize motion blur by proper camera and grid mounts, prevent reflections from the calibration surface (ideally use
diffusion lighting). When using a custom calibration grid, make sure that the points extractor can achieve subpixel precision. Verify that
measurements of the real-world grid coordinates are accurate. Also, when using a chessboard calibration grid, make sure that the whole calibration
grid is visible in the image. Otherwise, it will not be detected because the detection algorithm requires a few pixels wide quiet zone around the
chessboard. Pay attention to the number of columns and rows, as providing misleading data may make the algorithm work incorrectly or not work at
all.

The recommended calibration grid to use in Fablmage Studio is a circles grid, see DeteciCalibrationGrid_Circles. Optimal circle radius may vary
depending on exact conditions, however a good rule of thumb is 10 pixels (20 pixel diameter). Smaller circles tend to introduce positioning jitter.
Bigger circles lower the total amount of calibration points and suffer from geometric inaccuracies, especially when lens distortion and/or perspective
is noticeable. Note: it is important to use a symmetric board as shown in the image below. Asymmetric boards are currently not supported.

¢eee
eese

@
&
@
&

*Leseeeee
o000 eee
2¢¢000020¢

PLLETOGOO
VeVOEPLBOG
SobeBLO80

Symmetric circle grid is the recommended one to use in Fablmage Studio. Unsupported asymmetric circle grid.

Detected chessboard grid, with image point array marked.

Application Guide — Image Stitching
Seamless image stitching in multiple camera setup is, in its essence, an image rectification onto the world plane.

Note that high quality stitching requires a vigilant approach to the calibration process. Each camera introduces both lens distortion as well as
perspective distortion, as it is never positioned perfectly perpendicular to the analyzed surface. Other factors that need to be taken into account are
the camera-object distance, camera rotation around the optical axis, and image overlap between cameras.

The process consists of two main steps. First, each camera is calibrated to produce a partial, rectified image. Then all partial images are simply
merged using the Joinimages filter.

Image stitching procedure can be outlined as follows:

e Cover the inspection area with two or more cameras. Make sure that fields of view of individual cameras overlap a bit.

e Place a calibration grid onto the inspection area. For each camera, capture the image of a part of the calibration grid. The grid defines a world
coordinate system used for stitching, and so it should contain some markers from which the coordinates of world plane points will be
identifiable for each camera.

o Define the world coordinate extents for which each camera will be responsible. For example, lets define that camera 1 should cover area from
100 to 200 in X, and from -100 to 100 in Y coordinate; camera 2 - from 200 to 300 in X, and from -100 to 100 in Y.

https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/AnnotateGridPoints.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/JoinImages.html

e For each camera, use a wizard associated with the inRectificationMap input of Rectifyimage filter to setup the image rectification. Use the
captured image for camera calibration and world to image transform. Use the defined world coordinate extents to setup the rectification map
generation (select "world bounding box" mode of operation). Make sure that the world scale for rectification is set to the same fixed value for all
images.

e Use the Joinimages appropriately to merge outputs of Rectifylmage filters.

A multi-camera setup for inspection of a flat object.

Input images, as captured by cameras.

Stitching result.

Golden Template

Golden Template technique performs a pixel-to-pixel comparison of two images. This technique is especially useful when the object's surface or
object's shape is very complex.

Fablmage Studio offers three ways of performing the golden template comparison.

e Comparison based on pixels intensity - it can be achieved using the CompareGoldenTemplate_Intensity. In this method two images are
compared pixel-by-pixel and the defect is classified based on a difference between pixels intensity. This technique is especially useful in finding
defects like smudges, scratches etc.

Golden template Defected object Found defects

Example usage of Golden Template technique using the pixels intensity based comparison.

https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/JoinImages.html
https://docs.fab-image.com/5.3/fil/functions/CameraCalibration/RectifyImage.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/CompareGoldenTemplate_Intensity.html

e Comparison based on objects edges - this method is very useful when defects may occur on the edge of the object and pixel comparison
may fail due to different light reflections or the checking the object surface is not necessary. For matching object's edges use the
filter.

Golden template Defected object Found defects

Example usage of Golden Template technique using the edges comparison.

e Second version of the comparison based on objects edges - this method uses more than one image to create the model for the
inspection. Due to that it is not vulnerable to pixel-sized errors and displacements. Advanced tips on how to use its parameters are located
here: .

How To Use

Golden template is a previously prepared image which is used to compare image from the camera. This robust technique allows us to perform quick
comparison inspection but some conditions must be met:

e stable light conditions,
e position of the camera and the object must be still,
e precise object positioning

Most applications use the technique for finding objects and then matched rectangle is compared. Golden template image and
image to compare must have this same dimensions. To get best results filter should be used. Please notice that filter
performs cropping using a real values and it has sub-pixel precision.

Deep Learning

Table of contents:

1.

© ® N o o~ DN

1. Introduction

Deep Learning is a breakthrough machine learning technique in computer vision. It learns from training images provided by the user and can
automatically generate solutions for a wide range of image analysis applications. Its key advantage, however, is that it is able to solve many of the
applications which have been too difficult for traditional, rule-based algorithms of the past. Most notably, these include inspections of objects with high
variability of shape or appearance, such organic products, highly textured surfaces or natural outdoor scenes. What is more, when using ready-
made products, such as our Fablmage Deep Learning, the required programming effort is reduced almost to zero. On the other hand, deep learning
is shifting the focus to working with data, taking care of high quality image annotations and experimenting with training parameters — these elements
actually tend to take most of the application development time these days.

Typical applications are:

e detection of surface and shape defects (e.g. cracks, deformations, discoloration),

e detecting unusual or unexpected samples (e.g. missing, broken or low-quality parts),

e identification of objects or images with respect to predefined classes (i.e. sorting machines),
e |ocation, segmentation and classification of multiple objects within an image (i.e. bin picking),
e product quality analysis (including fruits, plants, wood and other organic products),

e |ocation and classification of key points, characteristic regions and small objects,

e optical character recognition.
The use of deep learning functionality includes two stages:

1. Training — generating a model based on features learned from training samples,

2. Inference — applying the model on new images in order to perform the actual machine vision task.

https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/CompareGoldenTemplate_Edges.html
https://docs.fab-image.com/5.3/fil/functions/ImageAnalysis/CompareGoldenTemplate2.html
https://docs.fab-image.com/5.3/fil/machine_vision_guide/TemplateMatching.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.fab-image.com/5.3/fil/functions/ImageSpatialTransforms/CropImageToRectangle.html

The difference to the traditional image analysis approach is presented in the diagrams below:

INpUt IMAgE m—

— Results
o .
- Algorithm Computer

Programmer

Traditional approach: The algorithm must be designed by a human specialist.

Inputimage =—p

—p- Results
. —»
Training Neural Computer
images network
Computer
N A S A
V— v
Training Inference

Machine learning approach: We only need to provide a training set of labeled images.

Overview of Deep Learning Tools

1. Anomaly Detection — this technique is used to detect anomalous (unusual or unexpected) samples. It only needs a set of fault-free samples
to learn the model of normal appearance. Optionally, several faulty samples can be added to better define the threshold of tolerable variations.
This tool is useful especially in cases where it is difficult to specify all possible types of defects or where negative samples are simply not
available. The output of this tool are: a classification result (normal or faulty), an abnormality score and a (rough) heatmap of anomalies in the

image.

An example of a missing object detection using tool.
Left: The original image with a missing element. Right: The classification result with a heatmap of anomalies.

2. Feature Detection (segmentation) — this technique is used to precisely segment one or more classes of pixel-wise features within an
image. The pixels belonging to each class must be marked by the user in the training step. The result of this technique is an array of probability

maps for every class.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html

An example of image segmentation using FisFilter DL_DetectFeatures tool.
Left: The original image of the fundus. Right: The segmentation of blood vessels.

3. Object Classification — this technique is used to identify an object in a selected region with one of user-defined classes. First, it is necessary
to provide a training set of labeled images. The result of this technique is: the name of detected class and a classification confidence level.

Set of images to classify ! !
Classification ’ '
Pl e e

Classteaf2

i

An example of object classification using FisFilter DI ClassifyObject tool.

4. Instance Segmentation — this technique is used to locate, segment and classify one or multiple objects within an image. The training requires
the user to draw regions corresponding to objects in an image and assign them to classes. The result is a list of detected objects — with their
bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

outClassdds | ouiClassiames |ouScores | X Width | Haght
]] 1,080 ECTR T 343 |45t
[1le Egg 1,880 384 & 7 7%
{2 |8 EEE 1,800 1808 |15 113 Bl
ale Egg 1,088 748 5. |18 |44%
ale g 1,088 1473 87 |15 422
8 58 [1, 200 787 |63z |337 |44
@ fgg 1,008 1117 (69 348 |aso
i le teg 1,000 8 ® |37 7%
fala Egg |1, 000 a &2 343 [4aa
iale Egg 1,090 143 (174 (195|370

An example of instance segmentation using FisFilter DI._Segmentinstances tool. Left: The original image. Right: The resulting list of detected
objects.

5. Point Location — this technique is used to precisely locate and classify key points, characteristic parts and small objects within an image. The
training requires the user to mark points of appropriate classes on the training images. The result is a list of predicted point locations with
corresponding class predictions and confidence scores.

outScores |oulCIassNames
e |e,078 [corner
T-BIIQBG “Corner
2 |e,982 |Corner
3 |e,975 -f_C-orner
4_-8',-584—'|C0r'ner'
s |e,005 |corner

An example of point location using FisFilier DI ocatePoints tool. Left: The original image. Right: The resulting list of detected points.

6. Reading Characters — this technique is used to locate and recognize characters within an image. The result is a list of found characters.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html

1505173037

An example of optical character recognition using tool. Left: The original image. Right: The image with the
recognized characters drawn.

Basic Terminology

You do not need to have the specialistic scientific knowledge to develop your deep learning solutions. However, it is highly recommended to
understand the basic terminology and principles behind the process.

Deep neural networks

Fablmage provides access to several standardized deep neural networks architectures created, adjusted and tested to solve industrial machine
vision tasks. Each of the networks is a set of trainable convolutional filters and neural connections which can model complex transformations of an
image with the goal to extract relevant features and use them to solve a particular problem. However, these networks are useless without proper
amount of good quality data provided for training process. This documentation presents necessary practical hints on creating an effective deep
learning model.

Depth of a neural network

Due to various levels of task complexity and different expected execution times, the users can choose one of five available network depths. The
Network Depth parameter is an abstract value defining the memory capacity of a neural network (i.e. the number of layers and filters) and the ability
to solve more complex problems. The list below gives hints about selecting the proper depth for a task characteristics and conditions.

1. Low depth (value 1-2)

o Aproblem is simple to define.

o A problem could be easily solved by a human inspector.
o Ashort time of execution is required.

o Background and lighting do not change across images.

o Well-positioned objects and good quality of images.
2. Standard depth (default, value 3)

o Suitable for a majority of applications without any special conditions.
o Amodern CUDA-enabled GPU is available.

3. High depth (value 4-5)

o Abig amount of training data is available.
o Aproblem is hard or very complex to define and solve.
o Complicated irregular patterns across images.
o Long training and execution times are not a problem.
o Alarge amount of GPU RAM (24GB) is available.
o Varying background, lighting and/or positioning of objects.
Tip: Test your solution with a lower depth first, and then increase it if needed.

Note: A higher network depth will lead to a significant increase in memory and computational complexity of training and execution.
Training process

Model training is an iterative process of updating neural network weights based on the training data. One iteration involves some number of steps
(determined automatically), each step consists of the following operations:

1. selection of a small subset (batch) of training samples,

2. calculation of an error measure for these samples,

3. updating the weights to achieve lower error for these samples.

At the end of each iteration, the current model is evaluated on a separate set of validation samples selected before the training process. Validation
set is automatically chosen from the training samples. It is used to simulate how neural network would work with real images not used during

training. Only the set of network weights corresponding with the best validation score at the end of training is saved as the final solution. Monitoring
the training and validation score (blue and orange lines in the figures below) in consecutive iterations gives fundamental information about the

progress:
1. Both training and validation scores are improving — keep training, the model can still improve.
2. Both training and validation scores has stopped improving — keep training for a few iterations more and stop if there is still no change.

3. Training score is improving, but validation score has stopped or is going worse — you can stop training, model has probably started overfitting
to your training data (remembering exact samples rather than learning rules about features). It may also be caused by too small amount of
diverse samples or too low complexity of the problem for a network selected (try lower Network Depth).

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html

>
>

r100% -100%

Accuracy
Accuracy

>
Epochs Epochs

An example of correct training. A graph characteristic for network overfitting.

The above graphs represent training progress in the Deep Learning Editor. The blue line indicates performance on the training samples, and the
orange line represents performance on the validation samples. Please note the blue line is plotted more frequently than the orange line as validation
performance is verified only at the end of each iteration.

Stopping Conditions
The user can stop the training manually by clicking the Stop button. Alternatively, it is also possible to set one or more stopping conditions:

1. lteration Count — training will stop after a fixed number of iterations.
2. lterations without Improvement — training will stop when the best validation score was not improved for a given number of iterations.
3. Time — training will stop after a given number of minutes has passed.

4. Validation Accuracy or Validation Error — training will stop when the validation score reaches a given value.

Preprocessing
To adjust performance to a particular task, the user can apply some additional transformations to the input images before training starts:

1. Downsample — reduction of the image size to accelerate training and execution times, at the expense of lower level of details possible to
detect. Increasing this parameter by 1 will result in downsampling by the factor of 2 over both image dimension.

2. Convert to Grayscale — while working with problems where color does not matter, you can choose to work with monochrome versions of
images.

Augmentation

In case when the number of training images can be too small to represent all possible variations of samples, it is recommended to use data
augmentations that add artificially modified samples during training. This option will also help avoiding overfitting.

Below is a description of the available augmentations and examples of the corresponding transformations:

1. Luminance — change brightness of samples by a random percentage (between -ParameterValue and +ParameterValue) of pixel values (0-
255). For a given augmentation values, samples as below can be added to the training set.

Luminance=-50. Luminance=-25. Original image. Luminance=25. Luminance=50.

2. Noise — modify samples with uniform noise. Value of each channel and pixel is modified separately, by random percentage (between -
ParameterValue and +ParameterValue) of pixel values (0-255). Please note that choosing an appropriate augmentation value should depend
on the size of the feature in pixels. Larger value will have a much greater impact on small objects than on large objects. For a tile with the
feature "F" with the size of 130x130 pixels and a given augmentation values, samples as below can be added to the training set.:

Original grayscale Grayscale image. Grayscale image. Grayscale image. Grayscale image.
image. Noise=4. Noise=10. Noise=25. Noise=50.

Original RGB image. RGB image. Noise=4. RGB image. Noise=10. RGB image. Noise=25. RGB image. Noise=50.

3. Gaussian Blur - blur samples with a kernel of a size randomly selected between 0 and the provided maximum kernel size. Please note that
choosing an appropriate Gaussian Blur Kernel Size should depend on the size of the feature in pixels. Larger kernel sizes will have a much
greater impact on small objects than on large objects. For a tile with the feature "F" with the size of 130x130 pixels and a given augmentation
values, samples as below can be added to the training set.:

Original image. Gaussian Blur=5. Gaussian Blur=10. Gaussian Blur=25. Gaussian Blur=50.

4. Rotation - rotate samples by a random angle between -ParameterValue and +ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can
be added to the training set.

Tile rotation=-45°. Tile rotation=-20°. Original tile. Tile rotation=20°. Tile rotation=45°.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added

to the training set.

Image rotation=-45°. Image rotation=-20°. Original image. Image rotation=20°. Image rotation=45°.

5. Flip Up-Down — reflect samples along the X axis.

6. Flip Left-Right — reflect samples along the Y axis.

No flips. Up-Down flip. Left-Right flip. Both flips.

7. Relative Translation — translate samples by a random shift, defined as a percentage (between -ParameterValue and +ParameterValue) of
the tile (in Detect Features, Locate Points and Detect Anomalies) or the image size (in Classify Object and Segment Instances). Works
independently in both X and Y dimensions.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can
be added to the training set.

F F "

Tile translation x=20%, y=20%. Original tile. Tile translation x=-20%, y=-20%.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added
to the training set.

F F "

Image translation x=20%, y=20%. Original image. Image translation x=-20%, y=-20%.

8. Scale - resize samples relatively to their original size by a random percentage between the provided minimum scale and maximum scale.

Resize=50%. Original image. Resize=150%.

9. Horizontal Shear — shear samples horizontally by an angle between -ParameterValue and +ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can
be added to the training set.

Horizontal Shear=-30. Original tile. Horizontal Shear=30.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added
to the training set.

Horizontal Shear=-30. Original image. Horizontal Shear=30.

10. Vertical Shear — analogous to Horizontal Shear.

In Detect Features, Locate Points, and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can
be added to the training set.

Vertical Shear=-30. Original tile. Vertical Shear=30.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added
to the training set.

Vertical Shear=-30. Original image. Vertical Shear=30.

Warning: the choice of augmentation options depends only on the task we want to solve. Sometimes they might be harmful for quality of a solution.
For a simple example, the Rotation should not be enabled if rotations are not expected in a production environment. Enabling augmentations also
increases the network training time (but does not affect execution time!)

2. Anomaly Detection

Fablmage Deep Learning provides three ways of defect detection:

. Single Class
. Golden Template
The (reconstructive approach) uses deep neural networks to remove defects from the input image by reconstructing

the affected regions. It is used to analyze images in fragments of size determined by the Feature Size parameter.
This approach is based on reconstructing an image without defects and then comparing it with the original one. It filters out all patterns smaller than
Feature Size that were not present in the training set.

The Single Class uses a simpler algorithm than Golden Template. It uses less space and the iteration time is
shorter. It can be used with less complex objects.

The Golden Template is an appropriate method for positioned objects with complex details. The tool divides the
images into regions and creates a separate model for each region. The tool has the Texture Mode dedicated for texture defects detection. It can be
used for plain surfaces or the ones with a simple pattern.

To sum up, while choosing the tool for anomaly detection, first check the Golden Template with the Texture Mode on or off, depending on the
object's kind. If the model takes too much space or the iteration is too long, please try the Single Class tool. If the object is complex and its position
is unstable, please check the approach.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html

&

An example of textile defect detection using the FisFilter DL_DetectAnomalies?.
Parameters

o Feature Size is related to FisFilter DL_DetectAnomalies1 and FisFilter_DL_DetectAnomalies? Single Class approach. It corresponds to the
expected defect size and it is the most significant one in terms of both quality and speed of inspection. It it is represented by a green square in
the Image window of the Editor. The common denominator of all fragment based approaches is that the Feature Size should be adjusted
so that it contains common defects with some margin.

For FisFilter DL_DetectAnomalies 1 large Feature Size will cause small defects to be ignored, however the inference time will be shortened
considerably. Heatmap precision will also be lowered. For FisFilter DL_DetectAnomalies2 Single Class large Feature Size increases training
as well as inference time and memory requirements. Consider using Downscale parameter instead of increasing the Feature Size.

o Sampling Density is related to FisFilter_ DL_DetectAnomalies1 and FisFilter_DL_DetectAnomalies2 Single Class approach. It controls the
spatial resolution of both training and inspection. The higher the density the more precise results but longer computational time. It is
recommended to use the Low density only for well positioned and simple objects. The High density is useful when working with complex
textures and highly variable objects.

e Max Translation is related to FisFilter DL_DetectAnomalies?2 Golden Template approach. It is the maximal position change tolerance. If the
parameter increases, the working area of a small model enlarges and the number of the created small models decreases.

e Model Complexity is related to FisFilter_DL_DetectAnomalies? Golden Template and FisFilter DL_DetectAnomalies2 Texture approach.
Greater value may improve model effectiveness, especially for complex objects, at the expense of memory usage and interference time.

Metrics

Measuring accuracy of anomaly detection tools is a challenging task. The most straightforward approach is to calculate the Recall/Precision/F1
measures for the whole images (classified as GOOD or BAD, without looking at the locations of the anomalies). Unfortunately, such an approach is
not very reliable due to several reasons, including: (1) when we have a limited number of test images (like 20), the scores will vary a lot (like A=5%)
when just one case changes; (2) very frequently the tools we test will find random false anomalies, but will not find the right ones - and still will get
high scores as the image as a whole is considered correctly classified. Thus, it may be tempting to use annotated anomaly regions and calculate the
per-pixel scores. However, this would be too fine-grained. For anomaly detection tasks we do not expect the tools to be necessarily very accurate in
terms of the location of defects. Individual pixels do not matter much. Instead, we expect that the anomalies are detected "more or less" at the right
locations. As a matter of fact, some tools which are not very accurate in general (especially those based on auto-encoders) will produce relatively
accurate outlines for the anomalies they find, while the methods based on one-class classification will usually perform better in general, but the
outlines they produce will be blurred, too thin or too thick.

For these reasons, we introduced an intermediate approach to calculation of Recall. Instead of using the per-image or the per-pixel methods, we use
a per-region one. Here is how we calculate Recall:

e For each anomaly region we check if there is any single pixel in the heatmap above the threshold. If it is, we increase TP (the number of True
Positives) by one. Otherwise, we increase FN (the number of False Negatives) by one.

e Then we use the formula:

TP

Recall = —————
TP+ FN

The above method works for Recall, but cannot be directly applied to the calculation of Precision. Thus, for Precision we use a per-pixel approach,
but it also comes with its own difficulties. First issue is that we often find ourselves having a lot of GOOD samples and a very limited set of BAD
testing cases. This means unbalanced testing data, which in turn means that the Precision metric is highly affected with the overwhelming quantity
of GOOD samples. The more GOOD samples we have (at the same amount of BAD samples), the lower Precision will be. It may be actually very
low, often not reflecting the true performance of the tool. For that reason, we need to incorporate balancing into our metrics.

A second issue with Precision in real-world projects is that False Positives tend to naturally occur within BAD images, outside of the marked
anomaly regions. This happens for several reasons, but is repeatable among different projects. Sometimes if there is a defect, it often means that
something was broken and other parts of the object may be slightly affected too, sometimes in a visible way, sometimes with a level of ambiguity.
And quite often the objects under inspection simply get affected by the process of artificially introducing defects (like someone is touching a piece of
fabric and accidentally causes wrinkles that would normally not occur). For this reason, we calculate the per-pixel False Negatives only on GOOD
images.

The complete procedure for calculation of Precision is:
e \We calculate the average pp_TP (the number of per-pixel True Positives) across all BAD testing samples.
e \We calculate the average pp_FP (the number of per-pixel False Positives) across all GOOD testing samples.
e Then we use the formula:

pp_TP
Precision=————————
pp_TP +pp_FP

Finally we calculate the F1 score in the standard way, for practical reasons neglecting the fact that the Recall and Precision values that we unify

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html

were calculated in different ways. We believe that this metric is best for practical applications.

Model Usage

In Detect Anomalies 1 variant, a model should be loaded with FisFilter_ DL_DetectAnomalies1_Deploy prior to executing it with
FisFilter DL_DetectAnomalies 1. Alternatively, the model can be loaded directly by FisFilter DL_DetectAnomalies filter, but it will then require time-
consuming initialization in the first program iteration.

DL_DetectAnomalies1_Deploy

@ inModelDirectory
outModelld

DL_DetectAnomalies1

inlmage o inModelld
.43‘ outlsValid
outHeatmap ™ outScore

In Detect Anomalies 2 variant, a model should be loaded with FisFilter_DL_DetectAnomalies2_Deploy prior to executing it with
FisFilter DL_DetectAnomalies2. Alternatively, model can be loaded directly by FisFilter DL_DetectAnomalies? filter, but it will then require time-
consuming initialization in the first program iteration.

DL_DetectAnomalies2_Deploy
inModelDirectory
outModelld

DL_DetectAnomalies2

inmage o s
oA outlsValid
™

outHeatmap outScore

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

3. Feature Detection (segmentation)

This technique is used to detect pixel-wise regions corresponding to defects or — in a general sense — to any image features. A feature here may be
also something like the roads on a satellite image or an object part with a characteristic surface pattern. Sometimes it is also called pixel labeling as
it assigns a class label to each pixel, but it does not separate instances of objects.

Training Data

Images used for training can be of different sizes and can have different ROls defined. However, it is important to ensure that the scale and the
characteristics of the features are consistent with that of the production environment.

Each and every feature should be marked on all training images, or the ROl should be limited to include only marked defects. Incompletely or
inconsistently marked features are one of the main reasons of poor accuracy. REMEMBER: If you leave even a single piece of some feature not
marked, it will be used as a negative sample and this will highly confuse the training process!

The marking precision should be adjusted to the application requirements. The more precise marking the better accuracy in the production
environment. While marking with low precision it is better to mark features with some excess margin.

An example of wood knots marked with low precision. An example of tile cracks marked with high precision.

Multiple classes of features

It is possible to detect many classes of features separately using one model. For example, road and building like in the image below. Different
features may overlap but it is usually not recommended. Also, it is not recommended to define more than a few different classes in a single model.
On the other hand, if there are two features that may be mutually confusing (e.g. roads and rivers), it is recommended to have separate classes for
them and mark them, even if one of the classes is not really needed in the results. Having the confusing feature clearly marked (and not just left as
the background), the neural network will focus better on avoiding misclassification.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies1.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectAnomalies2.html

An example of marking two different classes (red roads and yellow buildings) in the one image.

Patch Size

Detect Features is an end-to-end segmentation tool which works best when analysing an image in a medium-sized square window. The size of this
window is defined by the Patch Size parameter. It should be not too small, and not too big. Typically much bigger than the size (width or diameter) of
the feature itself, but much less than the entire image. In a typical scenario the value of 96 or 128 works quite well.

Performance Tip 1: a larger Patch Size increases the training time and requires more GPU memory and more training samples to operate
effectively. When Patch Size exceeds 128 pixels and still looks too small, it is worth considering the Downsample option.

Performance Tip 2: if the execution time is not satisfying you can set the inOverlap filter input to False. It should speed up the inspection by 10-30%
at the expense of less precise results.

Examples of Patch Size: too large or too small (red), maybe acceptable (yellow) and good (green). Remember that this is just an example and may
vary in other cases.

Model Usage

A model should be loaded with FisFilter DL_DetectFeatures_Deploy filter before using FisFilter_DL_DetectFeatures filter to perform segmentation of
features. Alternatively, the model can be loaded directly by FisFilter DL_DetectFeatures filter, but it will result in @ much longer time of the first

iteration.

DL_DetectFeatures_Deploy
inModel Directory
outModelld

DL_DetectFeatures

(IR inModelld

inRoi - (:_.

outFeature1 :>'-'-“)
inOverdap

outFeature2

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

e To limit the area of image analysis you can use inRoi input.
e To shorten feature segmentation process you can disable inOverlap option. However, in most cases, it decreases segmentation quality.

o Feature segmentation results are passed in a form of bitmaps to outHeatmaps output as an array and outFeature1, outFeature2,
outFeature3 and outFeature4 as separate images.

4. Object Classification

This technique is used to identify the class of an object within an image or within a specified region.

The Principle of Operation

During the training phase, the object classification tool learns representation of user defined classes. The model uses generalized knowledge gained
from samples provided for training, and aims to obtain good separation between the classes.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_DetectFeatures.html

Fimd_1

Rim1_1 Rim2_8 _
Class Class Class: Classd¥
Resul: Result Resut: Classd (95.7%)
Rim1_2 RIm2_9 Rim4_8
Claza: [(EESED * WP Class 2w | Class: Classd¥
Fesult QTR Class2 (59 5%) Result: Classd (59.3%)
Rim1_3 Rim2_10 Rim4_9
Class Class Class: ClassdW

Class | (39 8%) Resul Resut: (Class4 (39.0%)

Result of classification after training.

After a training process is completed, the user is presented with a confusion matrix. It indicates how well the model separated the user defined
classes. It simplifies identification of model accuracy, especially when a large number of samples has been used.

Confusion matrix:

paiIpaiy

Confusion matrix presents correct (diagonal) and incorrect assignment of samples to the user defined classes.

Training Parameters

In addition to the default training parameters (list of parameters available for all Deep Learning algorithms), the FisFilter_DL_ClassifyObject tool
provides a Detail Level parameter which enables control over the level of detail needed for a particular classification task. For majority of cases the
default value of 1 is appropriate, but if images of different classes are distinguishable only by small features (e.g. granular materials like flour and
salt), increasing value of this parameter may improve classification results.

Model Usage

A model should be loaded with FisFilter DL ClassifyObject_Deploy filter before using FisFilter DL_ClassifyObject filter to perform classification.
Alternatively, model can be loaded directly by FisFilter DL_ClassifyObject filter, but it will result in a much longer time of the first iteration.

DL_ClassifyObject_Deploy

inModelDirectory
outModelld
DL_ClassifyObject

inlmage inMadelld
inRoi o outClassName

—— (o8
inRoiAlignment oy outClassindex
outAlignedRaoi outScore

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:
e To limit the area of image analysis you can use inRoi input.
e Classification results are passed to outClassName and outClassindex outputs.

e The score value outScore indicates the confidence of classification.

5. Instance Segmentation

This technique is used to locate, segment and classify one or multiple objects within an image. The result of this technique are lists with elements
describing detected objects — their bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

Note that in contrary to feature detection technique, instance segmentation detects individual objects and may be able to separate them even if they
touch or overlap. On the other hand, instance segmentation is not an appropriate tool for detecting features like scratches or edges which may
possibly have no object-like boundaries.

Visualized instance segmentation results.

Original image.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ClassifyObject.html

Training Data

The training phase requires the user to draw regions corresponding to objects on an image and assign them to classes.

SD=ep Learsin g Editor - Instance Segmentation - model_nuts

Image Set Worklow | %81,Labeling Objects| > & 2 Region o terest 3 M 3. Taining Resuts Tools

% M- B X 10/10images FRERE Scle: 154% - (] I - View: I Pre-processin g | Mesk: ¥ Import Mask.. # Export Mask... W ClearMask ™ Auto Label Merked bereos

Fiter Al | Class: 8 W1 Cosbenrit | 2 Hazcs |3 v & Hana

Als

Maimal uber of objects marked)
on sngle iage:

& @20 |E

Comvetio Gaycle [Fane
Rotation Angle [S0
Fip Up-Down True

Fip Left-Right True
re W
Minimum Scale [%] 75

No element selected. x
Path Luts 7| Show Model Detals... B> Tren P Resume
© @ Sseviceisonine. Save 8B || Ext Wihout Saving

Editor for marking objects.

Training Parameters

Instance segmentation training adapts to the data provided by the user and does not require any additional training parameters besides the default
ones.

Model Usage

A model should be loaded with FisFilter DL_Segmentinstances_Deploy filter before using FisFilier DL._Segmentinstances filter to perform
classification. Alternatively, model can be loaded directly by FisFilier DL_Segmentinstances filter, but it will result in a much longer time of the first
iteration.

DL_SegmentInstances_Deploy
inModel Directory
outModelld

DL_Seg Tnstances

inimage : inModelld
inRoi :i%
outMasks = outScores

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

e To limit the area of image analysis you can use inRoi input.
e To set minimum detection score inMinDetectionScore parameter can be used.

e Maximum number of detected objects on a single image can be set with inMaxObjectsCount parameter. By default it is equal to the
maximum number of objects in the training data.

o Results describing detected objects are passed to following outputs:
o bounding boxes: outBoundingBoxes,
o class IDs: outClasslds,
o class names: outClassNames,
o classification scores: outScores,

o masks: outMasks.

6. Point Location

This technique is used to precisely locate and classify key points, characteristic parts and small objects within an image. The result of this technique
is a list of predicted point locations with corresponding class predictions and confidence scores.

When to use point location instead of instance segmentation:

e precise location of key points and distinctive regions with no strict boundaries,

o |ocation and classification of objects (possibly very small) when their segmentation masks and bounding boxes are not needed (e.g. in object
counting).

When to use point location instead of feature detection:

o coordinates of key points, centroids of characteristic regions, objects etc. are needed.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_SegmentInstances.html

Original image. Visualized point location results.

Training Data

The training phase requires the user to mark points of appropriate classes on the training images.

“#Deep Learning Editor - Point Location - Hodel =NErx

Image Set Worklow | %1,Labeling oins | > 72 Region ofnterest. > M 3, Taining Resuts Tools

% - - X 22imeges O || 8 scale: 94% - B -] View B Pre-processing | Points:) Import A Export = X AutoLabel Sefctnd Ports:
0 Meee
Filter Al 7| Class: 8 @1 e 1 Hee
2 [eee
L3 3 Wee
4 Mee
O 5 Wsee
5 Meee
aQ 7 e
5 Moee
s e
* 0 Ren b
x k1
Training Parameters
o O] Ve |
Network Depih | 3 2
Featue Sze 1
Custon Paraneters: @
Conveto Gayscale [Fooe
[T T
Augmertations
Ratation fnge [1 | 180
A Up Down [e
P LR [[Te L
No element selected. x
Path B Trein PP Resume:
O @ Ssevceisonine. Save 8Bt | Ext Wihou Savng

Editor for marking points.

Feature Size

In the case of the Point Location tool, the Feature Size parameter corresponds to the size of an object or characteristic part. If images contain
objects of different scales, it is recommended to use a Feature Size slightly larger than the average object size, although it may require
experimenting with different values to achieve the best possible results.

Performance tip: a larger feature size increases the training time and needs more memory and training samples to operate effectively. When feature
size exceeds 64 pixels and still looks too small, it is worth considering the Downsample option.

Model Usage

A model should be loaded with FisFilter DL_LocatePoints_Deploy filter before using FisFilter DL_LocatePoints filter to perform point location and
classification. Alternatively, model can be loaded directly by FisFilier DL_LocatePoints filter, but it will result in @ much longer time of the first
iteration.

DL_LocatePoints_Deploy
inModel Directory
outModelld
DL_LocatePoints
inlmage : inModelld
inRoi @ outLocations

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

e To limit the area of image analysis you can use inRoi input.

e To set minimum detection score inMinDetectionScore parameter can be used.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html

« inMinDistanceRatio parameter can be used to set minimum distance between two points to be considered as different. The distance is
computed as MinDistanceRatio * FeatureSize. If the value is not enabled, the minimum distance is based on the training data.

e Toincrease detection speed but with potentially slightly worse precision inOverlap can be set to False.
o Results describing detected points are passed to following outputs:

o point coordinates: outLocations,

o class IDs: outClasslds,

o class names: outClassNames,

o classification scores: outScores.

7. Locating objects

This technique is used to locate and classify one or multiple objects within an image. The result of this technique is a list of rectangles bounding the
predicted objects with corresponding class predictions and confidence scores.

The tool returns the rectangle region containing the predicted objects and showing their approximate location and orientation , but it doesn't return the
precise position of the key points of the object or the segmented region. It is an intermediate solution between the Point Location and the Instance
Segmentation.

Original image.

Visualized object location results.

Training Data

The training phase requires the user to mark rectangles bounding objects of appropriate classes on the training images.

4 Deep Learming Editor - Locate Objects - model_candy - 8 X

Image Set Workflow 29 1. Labeling Rectangles > & 2. Region of Interest > | 3, Training Resuits

% - - X 72/72images @ | B soe 4% - KO- View M Preprocessing (labels Evaluate: Y2 Thisimage *7 All mages (]
Fiter Al A
- L] = (]] a na
2@ X 0
e e T
e LY a %
— .
SV v
5y
Train
e i,
oD
“rn
L 4
Train
se® Do
ana e
L
Train
= o v
Training Parameters.
B Ve
s A
o
®
s
L v
No element selected . x
Model History
Versont Tobisas168 @) Path o Leandy | ShowtioeDesis P Tan M Rosume
O @ sevcenenne oce RTX21 Save Soves bt || ExtWhouSoung

Editor for marking objects.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocatePoints.html

Model Usage

A model should be loaded with FisFilter DL LocateObjects_Deploy filter before using FisFilter DL_LocateObjects filter to perform object location
and classification. Alternatively, model can be loaded directly by FisFilter DL_LocateObjects filter, but it will result in a much longer time of the first

iteration.

DL_LocateObjects_Deploy

inModelDirectory
outModelld

DL_LocateObjects

inlmage

inRoi

outObjects
outObjects. Rectangle

-
-

o
By

inModelld

outObjects ClassName

outObjects Score

Running Fabimage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

e To limit the area of image analysis you can use inRoi input.

e To set minimum detection score inMinDetectionScore parameter can be used.

e Results describing detected objects are passed to the object output: outObjects.

8. Reading Characters

This technique is used to locate and recognize characters within an image. The result is a list of found characters.

This tool uses the pretrained model and cannot be trained.

15051

Original image.

Model Usage

13031

Visualized results of the read characters.

A model should be loaded with FisFilier DL._ReadCharacters_Deploy filter before using FisFilter DL_ReadCharacters filter to perform recognition.
Alternatively, model can be loaded directly by FisFilter DL._ReadCharacters filter, but it will result in a much longer time of the first iteration.

DL_ReadCharacters_Deploy

outModelld

DL_ReadCharacters

inlmage

inFoi
inRoiAlignment
diaglnputimage
outCharacters
outCharacters.Box
outMasks
outAlignedRoi

ol
€8

inModelld

inPolarization

outCharacters. Value

outCharacters. Score

Running Fablmage Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

e To limit the area of the image analysis and/or to set a text orientation you can use inRoi input.

e The average size (in pixels) of characters in the analysed area should be set with inCharHeight parameter.

e Toimprove a performance with a font with exceptionally thin or wide characters you can use inWidthScale input. To some extent, it may also
help in a case of characters being very close to each other.

e To restrict set of recognized characters use inCharRange parameter.

9. Troubleshooting
Below you will find a list of most common problems.

1. Network overfitting

A situation when a network loses its ability to generalize over available problems and focuses only on test data.

Symptoms: during training, the validation graph stops at one level and training graph continues to rise. Defects on training images are marked very

precisely, but defects on new images are marked poorly.

https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_LocateObjects.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters_Deploy.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html
https://docs.fab-image.com/5.3/fil/functions/DeepLearning/FisFilter_DL_ReadCharacters.html

>

-100%

Accuracy

Epochs
A graph characteristic for network overfitting.
Causes:

e The number of test samples is too small.

e Training time is too long.
Possible solutions:

e Provide more real samples of different objects.
o Use more augmentations.
o Reduce Network Depth.

2. Susceptibility to changes in lighting conditions
Symptoms: network is not able to process images properly when even minor changes in lighting occur.
Causes:
e Samples with variable lighting were not provided.
Solution:

e Provide more samples with variable lighting.

e Enable "Luminance" option for automatic lighting augmentation.
3. No progress in network training

Symptoms — even though the training time is optimal, there is no visible training progress.

A

r100%

I

Accuracy

T50% _l_
I g

>
Epochs

Training progress with contradictory samples.
Causes:

e The number of samples is too small or the samples are not variable enough.
o Image contrast is too small.
o The chosen network architecture is too small.

o There is contradiction in defect masks.
Solution:

o Modify lighting to expose defects.

o Remove contradictions in defect masks.

Tip: Remember to mark all defects of a given type on the input images or remove images with unmarked defects. Marking only a part of defects of a
given type may negatively influence the network learning process.

4. Training/sample evaluation is very slow
Symptoms — training or sample evaluation takes a lot of time.
Causes:
o Resolution of the provided input images is too high.
e Fragments that cannot possibly contain defects are also analyzed.
Solution:
e Enable "Downsample" option to reduce the image resolution.
e Limit ROI for sample evaluation.

o Use lower Network Depth

See Also

e Deep Learning training AP! documentation - instruction how to perform training of Deep Learning models.

Ny Image

Thisarticle is valid for version 5.3.4

https://docs.fab-image.com/5.3/fil/technical_issues/DeepLearningTrainingAPI.html

	FabImage Library 5.3
	FabImage Library Documentation

	1. Introduction
	Overview
	Introduction
	Relation between FabImage Library and FabImage Studio
	Key Features
	Performance
	Modern Design
	Consistency

	Example Program

	Programming Conventions
	Organization of the Library
	Namespaces
	Enumeration Types
	Function Parameters
	Diagnostic Output Parameters
	Optional Outputs
	In-Place Data Processing
	Work Cancellation
	Library Initialization
	Debug Preview

	Fab Template Library
	Array<T>
	Optional<T>
	Conditional<T>
	Dummy<T>

	2. Getting Started
	SDK Installation
	Requirements
	Running the Installer
	SDK Directories
	Library Architecture
	Environment and Paths

	Project Configuration
	General Information
	Creating a New Project
	Microsoft Visual Studio 2015, 2017 and 2019

	Required Project Settings
	Including Headers
	Distributing FabImage Library with Your Application

	Using Library with CMake
	Quick Start
	Reference
	package
	install_fil
	copy_fil

	3. Technical Issues
	Interfacing with Other Libraries
	Example: Converting Between fil::Image and OpenCV Mat
	Example: fil::Image from pointer to image data
	Displaying Images Directly on WinAPI/MFC Device Context (HDC)

	Loading FabImage Studio Files (FIDATA)
	Working with GenICam GenTL Devices
	Introduction
	Basic Usage
	Advanced Usage
	Additional Requirements

	Processing Images in Worker Thread
	Introduction to the Problem
	Example Application and Image Buffer Synchronization
	Notifications about Image Ready to Display
	Issues of Multithreading

	Troubleshooting
	Problems with Building
	error LNK2019: unresolved external symbol _LoadImageA referenced in function error C2039: 'LoadImageA' : is not a member of 'fil'
	error LNK1123: failure during conversion to COFF: file invalid or corrupt

	Exceptions Thrown in Run Time
	Exception from the fil namespace is thrown

	High CPU Usage When Running FIL Based Image Processing

	Memory Leak Detection in Microsoft Visual Studio
	False Positives of Memory Leaks in FIL.dll
	Solution: Delayed Loading of FIL.dll
	Further Consequences

	FTL Data Types Visualizers
	Data Visualizers
	Example FTL data visualization
	Image Watch extension

	Optimizing Image Analysis for Speed
	General Rules
	Common Optimization Tips
	Library-specific Optimizations
	In-Place Data Processing
	Re-use of Image Memory
	Skipping Background Initialization
	Library Initialization

	Configuring Parallel Computing
	Configuring Image Memory Pools
	Using GPGPU/OpenCL Computing

	Libraries comparison
	Introduction
	Image Acquisition
	Image Processing (Part I)
	Image Processing (Part II)
	Region Analysis
	Geometry 2D
	Path
	Computer Vision
	Camera Calibration
	Machine Learning
	Communication

	Deep Learning Training API
	1. Overview
	2. Types
	3. Functions
	CreateSamples
	Syntax
	Parameters

	Train
	Syntax
	Parameters
	Remarks

	SolveTrainingSamples
	Syntax
	Parameters
	Remarks

	GetWorstValidationValue
	Syntax
	Remarks

	IsValidationBetter
	Syntax
	Parameters
	Remarks

	FindBestValidation
	Syntax
	Parameters
	Remarks

	4. Handling events
	4. Working with GigE Vision® Devices
	Enabling Traffic in Firewall
	Enabling Jumbo Packets
	Introduction
	Enabling Jumbo Packets in Windows Vista/7

	GigE Vision® Device Manager
	Device Manager Functions
	Refresh
	Tools
	Tool: Access Device Settings...
	Tool: Setup Device Network Interface...
	Tool: Assign Temporary IP for Unreachable Device
	Tool: Application Transport Settings...
	Tool: Open GenICam XML Directory

	Connecting Devices
	Firewall Issues
	Configuring IP Address of a Device
	Packet Size
	Connecting Multiple Devices to a Single Computer

	Device Settings Editor
	Saving Device Configuration
	Parameter Information

	Known Issues
	Imaging Source Cameras

	5. Machine Vision Guide
	Image Processing
	Introduction
	Regions of Interest
	Image Boundary Processing
	Toolset
	Image Combinators
	Image Smoothing
	Image Morphology
	Gradient Analysis
	Spatial Transforms
	Spatial Transform Maps
	Image Thresholding
	Image Pixel Analysis
	Image Features

	Blob Analysis
	Introduction
	Concept
	Examples
	Rubber Band
	Mounts

	Extraction
	Thresholding
	Classic Thresholding
	Dynamic Thresholding
	Color-based Thresholding

	Refinement
	Region Morphology
	Dilation and Erosion
	Closing and Opening

	Other Refinement Methods

	Analysis
	Region Features
	Numeric Features
	Non-numeric Features

	Case Studies
	Capsules
	FindRegion Routine
	Complete Solution

	1D Edge Detection
	Introduction
	Concept
	Example

	Filter Toolset
	Parameters
	Profile Extraction
	Edge Extraction
	Edge Transition
	Stripe Intensity

	Case Study: Blades

	1D Edge Detection – Subpixel Precision
	Introduction
	Example: Parabola Fitting
	Advanced: Methods Available in FabImage

	Shape Fitting
	Introduction
	Concept
	Toolset
	Parameters

	Template Matching
	Introduction
	Concept
	Naive Template Matching
	Image Correlation
	Cross-Correlation
	Normalized Cross-Correlation

	Template Correlation Image
	Identification of Matches
	Summary

	Grayscale-based Matching, Edge-based Matching
	Image Pyramid
	Pyramid Processing
	Grayscale-based Matching
	Edge-based Matching

	Filter Toolset
	Available Filters
	Advanced Application Schema
	Schema 1: Model Creation in a Separate Program
	Schema 2: Dynamic Model Creation

	Model Creation
	Height of the Pyramid
	Angle Range
	Scale Range
	Edge Detection Settings (only Edge-based Matching)

	Matching

	Tips and Best Practices
	How to Select a Method?
	How to even further upgrade the results of Edge-based Matching?

	Using Local Coordinate Systems
	Introduction
	Creating a Local Coordinate System
	Using a Local Coordinate System
	Example 1: Alignment from Template Matching
	Example 2: Alignment from Blob Analysis

	Manual Alignment
	Not Mixing Local Coordinate Systems

	Optical Character Recognition
	Introduction
	Concept

	Using high level Optical Character Recognition filters
	Details on Optical Character Recognition technique
	Reading text from images
	Getting text location
	Extracting text from the background
	Segmenting text
	Using prepared OCR models
	Character recognition
	Interpreting results
	Verifying results

	Preparation of the OCR models
	Preparation of the training data set
	Selection of normalization size and character features
	Training of the OCR model
	Saving the training results

	Camera Calibration and World Coordinates
	Camera Calibration
	World Plane - Measurements and Rectification
	Extraction of Calibration Grids
	Application Guide – Image Stitching

	Golden Template
	How To Use

	Deep Learning
	1. Introduction
	Overview of Deep Learning Tools
	Basic Terminology
	Deep neural networks
	Depth of a neural network
	Training process

	Stopping Conditions
	Preprocessing
	Augmentation

	2. Anomaly Detection
	Parameters
	Metrics
	Model Usage

	3. Feature Detection (segmentation)
	Training Data
	Multiple classes of features

	Patch Size
	Model Usage

	4. Object Classification
	The Principle of Operation
	Training Parameters
	Model Usage

	5. Instance Segmentation
	Training Data
	Training Parameters
	Model Usage

	6. Point Location
	Training Data
	Feature Size
	Model Usage

	7. Locating objects
	Training Data
	Model Usage

	8. Reading Characters
	Model Usage

	9. Troubleshooting
	1. Network overfitting
	2. Susceptibility to changes in lighting conditions
	3. No progress in network training
	4. Training/sample evaluation is very slow

	See Also

